Skip to main content
Log in

Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The ends of eukaryotic chromosomes are capped with special nucleoprotein structures called telomeres. Telomere shortening due to telomerase inactivation may result in fusion of homologous or heterologous chromosomes, leading to their successive breakage during anaphase movement, followed by fusion of broken ends in the next cell cycle, i.e. the breakage-fusion-bridge (BFB) cycle. Using fluorescence in situ hybridization (FISH) with 25S rDNA and specific bacterial artificial chromosome (BAC) probes we demonstrate participation of chromosomes 2 and 4 of Arabidopsis thaliana AtTERT null plants in the formation of anaphase bridges. Both homologous and non-homologous chromosomes formed transient anaphase bridges whose breakage and unequal separation led to genome rearrangement, including non-reciprocal translocations and aneuploidy. The 45S rDNA regions located at the ends of chromosomes 2 and 4 were observed in chromosome bridges at a frequency approximately ten times higher than expected in the case of random fusion events. This outcome could result from a functional association of rDNA repeats at nucleoli. We also describe increased variation in the number of nucleoli in some interphase cells with supernumerary rDNA FISH signals. These data indicate that dysfunctional telomeres in Arabidopsis lead to massive genome instability, which is induced by multiple rounds of the BFB mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2A–F.
Fig. 3A–H.
Fig. 4A–E.

Similar content being viewed by others

References

  • Artandi SE, DePinho RA (2000) A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10:39–46

    Article  CAS  PubMed  Google Scholar 

  • Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645

    Google Scholar 

  • Blasco MA, Lee H-W, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    CAS  PubMed  Google Scholar 

  • Copenhaver GP, Pikaard CS (1996) RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J 9:259–272

    Article  CAS  PubMed  Google Scholar 

  • Dhar MK, Friebe B, Koul AK, Gill BS (2002) Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma 111:332–340

    CAS  PubMed  Google Scholar 

  • Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (2002) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21:2207–2219

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci U S A 96:14813–14818

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald MS, Shakirov EV, Hood EE, McKnight TD, Shippen DE (2001) Different modes of de novo telomere formation by plant telomerases. Plant J 26:77–87

    CAS  PubMed  Google Scholar 

  • Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci U S A 99:14584–14589

    Article  CAS  PubMed  Google Scholar 

  • Galbraith CW (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    CAS  Google Scholar 

  • Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L, Wiegant J, Mertens F, Dal Cin P, Mitelman F, Mandahl N (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci U S A 97:5357–5362

    Article  CAS  PubMed  Google Scholar 

  • Hande MP, Samper E, Lansdorp P, Blasco MA (1999) Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J Cell Biol 144:589–601

    Article  CAS  PubMed  Google Scholar 

  • Hemann MT, Strong MA, Hao L-Y, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77

    CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS (1998) Cytogenetic analysis of Arabidopsis. In: Martinez-Zapater JM, Salinas J (eds) Arabidopsis Protocols. Humana Press, Totowa, pp 119–127

  • Killan A, Heller K, Kleinhofs A (1998) Development patterns of telomerase activity in barley and maize. Plant Mol Biol 37:621–628

    Article  CAS  PubMed  Google Scholar 

  • Kirk KE, Harmon BP, Reichardt IK, Sedat JW, Blackburn EH (1997) Block in anaphase chromosome separation caused by a telomerase template mutation. Science 275:1478–1481

    Article  CAS  PubMed  Google Scholar 

  • Kiss T, Kis M, Solomosy F (1989) Nucleotide sequence of a 25S-rDNA gene from tomato. Nucleic Acids Res 17:7179

    PubMed  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574

    Article  CAS  PubMed  Google Scholar 

  • Lengerova M, Vyskot B (2001) Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma 217:147–153

    CAS  PubMed  Google Scholar 

  • Lysak MA, Fransz PF, Ali HB, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1934) The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforsch Mikros Anat 21:294–328

    Google Scholar 

  • McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A 25:405–416

    Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282

    Google Scholar 

  • McKnight TD, Riha K, Shippen DE (2002) Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol 48:331–337

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ (1938) The remaking of chromosomes. Collecting Net 13:181–198

    Google Scholar 

  • O'Sullivan JN, Bronner MP, Brentnall TA, Finley JC, Shen WT, Emerson S, Emond MJ, Gollahon KA, Moskovitz AH, Crispin DA, Potter JD, Rabinovitch PS (2002) Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 32:280–284

    Article  CAS  PubMed  Google Scholar 

  • Pich U, Fuchs J, Schubert I (1996) How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4:207–213

    CAS  PubMed  Google Scholar 

  • Pikaard CS (2002) Transcription and tyranny in the nucleolus: the organization, activation, dominance and repression of ribosomal RNA genes. In: Somerville CR and Meyerowitz EM (eds) The Arabidopsis Book. American Society for Plant Biology, Rockville, Md, DOI 10.1199/tab.0083 http://www.aspb.org/publications/arabidopsis/

  • Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291:1797–1800

    CAS  PubMed  Google Scholar 

  • Schubert I (1984) Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae S-lat) — interferences from the specifity of silver staining. Plant System Evol 144:291–305

    Google Scholar 

  • Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12:1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Thompson H, Schmidt R, Brandes A, Heslop-Harrison JS, Dean C (1996) A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet 253:247–252

    CAS  PubMed  Google Scholar 

  • Wood JG, Sinclair DA (2002) TPE or not TPE? It's no longer a question. Trends Pharmacol Sci 23:1-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Grant Agency of the Czech Academy of Sciences (A6004304 and Z5004920), the Grant Agency of the Czech Republic (522/03/0354) and the NSF (MCB9982499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Vyskot.

Additional information

Communicated by D. Schweizer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siroky, J., Zluvova, J., Riha, K. et al. Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis . Chromosoma 112, 116–123 (2003). https://doi.org/10.1007/s00412-003-0251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0251-7

Keywords

Navigation