Skip to main content
Log in

Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Investigation of biological effects of low-dose ionizing radiation at the (sub-) cellular level, which is referred to as microdosimetry, remains a major challenge of today’s radiobiology research. Monte Carlo simulation of radiation tracks can provide a detailed description of the physical processes involved in dimensions as small as the critical substructures of the cell. Hereby, in the present study, microdosimetric calculations of cellular S values for mono-energetic electrons and six Auger-emitting radionuclides were performed in single-cell models of liquid water using Geant4-DNA. The effects of displacement and rotation of the nucleus within the cell on the cellular S values were studied in spherical and ellipsoidal geometries. It was found that for the examined electron energies and radionuclides, in the case of nucleus cross-absorption where the radioactivity is either localized in the cytoplasm of the cell or distributed on the cell surface, rotation of the nucleus within the cell affects cellular S values less than displacement of the nucleus. Especially, the considerable differences observed in S(nucleus ← cell surface) values between an eccentric and a concentric cell–nucleus configuration in spherical and ellipsoidal geometries (up to 63% and up to 44%, respectively) suggests that the approximation of concentricity should be used with caution, at least for localized irradiation of the cell membrane by an Auger-emitter in targeted radionuclide cancer therapy. The obtained results, which are based on a more realistic modeling of the cell than was done before, provide more accurate information about nuclear dose. This can be useful for theranostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4—a simulation toolkit. Nucl Instr Meth Phys Res A 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  • Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, Cirrone GAP, Cooperman G, Cosmo G, Cuttone G, Daquino GG, Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S, Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson A, Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O, Longo F, Maire M, Mantero A, Mascialino B, McLaren I, Mendez Lorenzo P, Minamimoto K, Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia MG, Ribon A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S, Tcherniaev E, Tomé B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch JP, Williams DC, Wright D, Yoshida H (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53:270–278. https://doi.org/10.1109/TNS.2006.869826

    Article  ADS  Google Scholar 

  • Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Beck BR, Bogdanov AG, Brandt D, Brown JMC, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone GAP, Cooperman G, Cortés-Giraldo MA, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira VD, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser KL, Grichine VM, Guatelli S, Guèye P, Gumplinger P, Howard AS, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko VN, Jones FW, Jun SY, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee SB, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia MG, Pokorski W, Quesada JM, Raine M, Reis MA, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin JI, Strakovski II, Taborda A, Tanaka S, Tomé B, Toshito T, Tran HN, Truscott PR, Urban L, Uzhinski V, Verbeke JM, Verderi M, Wendt BL, Wenzel H, Wright DH, Yamashita T, Yarba J, Yoshida H (2016) Recent developments in Geant4. Nucl Instr Meth Phys Res A 835:186–225. https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  • Amato E, Lizio D, Baldari S (2011) Absorbed fractions for electrons in ellipsoidal volumes. Phys Med Biol 56:357–365. https://doi.org/10.1088/0031-9155/56/2/005

    Article  Google Scholar 

  • André T, Morini F, Karamitros M, Delorme R, Le Loirec C, Campos L, Champion C, Groetz JE, Fromm M, Bordage MC, Perrot Y, Barberet Ph, Bernal MA, Brown JMC, Deleuze MS, Francis Z, Ivanchenko V, Mascialino B, Zacharatou C, Bardiès M, Incerti S (2014) Comparison of Geant4-DNA simulation of S values with other Monte Carlo codes. Nucl Instr Meth Phys Res B 319:87–94. https://doi.org/10.1016/j.nimb.2013.11.005

    Article  ADS  Google Scholar 

  • Bardiès M, Pihet P (2000) Dosimetry and microdosimetry of targeted radiotherapy. Curr Pharm Des 6:1469–1502. https://doi.org/10.2174/1381612003399176

    Article  Google Scholar 

  • Bernal MA, Bordage MC, Brown JMC, Davídková M, Delage E, El Bitar Z, Enger SA, Francis Z, Guatelli S, Ivanchenko VN, Karamitros M, Kyriakou I, Maigne L, Meylan S, Murakami K, Okada S, Payno H, Perrot Y, Petrovic I, Pham QT, Ristic-Fira A, Sasaki T, Štěpán V, Tran HN, Villagrasa C, Incerti S (2015) Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med 31:861–874. https://doi.org/10.1016/j.ejmp.2015.10.087

    Article  Google Scholar 

  • Bousis C (2011) Dosimetry on sub-cellular level for intracellular incorporated Auger-electron-emitting radionuclides: a comparison of Monte Carlo simulation and analytic calculations. Radiat Prot Dosim 143:33–41. https://doi.org/10.1093/rpd/ncq293

    Article  Google Scholar 

  • Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H (2009) A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons. Phys Med Biol 54:5023–5038. https://doi.org/10.1088/0031-9155/54/16/012

    Article  Google Scholar 

  • Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H (2010) Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides. Phys Med Biol 55:2555–2572. https://doi.org/10.1088/0031-9155/55/9/009

    Article  Google Scholar 

  • Chauvie S, Francis Z, Guatelli S, Incerti S, Mascialino B, Moretto P, Nieminen P, Pia MG (2007) Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models. IEEE Trans Nucl Sci 54:2619–2628. https://doi.org/10.1109/TNS.2007.910425

    Article  ADS  Google Scholar 

  • Di Maria S, Belchior A, Romanets Y, Paulo A, Vaz P (2018) Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies. Appl Radiat Isot 135:72–77. https://doi.org/10.1016/j.apradiso.2018.01.013

    Article  Google Scholar 

  • Eckerman KF, Westfall RJ, Ryman JC, Cristy M (1993) Nuclear decay data files of the Dosimetry Research Group. United States. https://doi.org/10.2172/10116928

  • Emfietzoglou D, Bousis C, Hindorf C, Fotopoulos A, Pathak A, Kostarelos K (2007) A Monte Carlo study of energy deposition at the sub-cellular level for application to targeted radionuclide therapy with low-energy electron emitters. Nucl Instr Meth Phys Res B 256:547–553. https://doi.org/10.1016/j.nimb.2006.12.055

    Article  ADS  Google Scholar 

  • Emfietzoglou D, Kostarelos K, Hadjidoukas P, Bousis C, Fotopoulos A, Pathak A, Nikjoo H (2008) Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations. Int J Radiat Biol 84:1034–1044. https://doi.org/10.1080/09553000802460180

    Article  Google Scholar 

  • Falzone N, Fernández-Varea JM, Flux G, Vallis KA (2015) Monte Carlo evaluation of Auger electron-emitting theranostic radionuclides. J Nucl Med 56:1441–1446. https://doi.org/10.2967/jnumed.114.153502

    Article  Google Scholar 

  • Famulari G, Pater P, Enger SA (2017) Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm. Phys Med Biol 62:5495–5508. https://doi.org/10.1088/1361-6560/aa71f6

    Article  Google Scholar 

  • Fourie H, Newman R, Slabbert J (2015) Microdosimetry of the Auger electron emitting 123I radionuclide using Geant4-DNA simulations. Phys Med Biol 60:3333–3346. https://doi.org/10.1088/0031-9155/60/8/3333

    Article  Google Scholar 

  • Ftáčniková S, Böhm R (2000) Monte Carlo calculations of energy deposition on cellular, multicellular and organ level for Auger emitters. Radiat Prot Dosim 92:279–288. https://doi.org/10.1093/oxfordjournals.rpd.a033293

    Article  Google Scholar 

  • Geng JP, Cao TG, Li DF, An HL, Han YR, Li J, Hu JS, Li NN, Zhan Y (2014) Calculation of the physical and microdosimetric parameters of electron and alpha-particle radiation using Monte Carlo simulations. Chinese Phys Lett 31:038701. https://doi.org/10.1088/0256-307X/31/3/038701

    Article  ADS  Google Scholar 

  • Goddu SM, Howell RW, Rao DV (1994) Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 35:303–316

    Google Scholar 

  • Goddu SM, Howell RW, Bouchet L, Bolch W, Rao DV (1997) MIRD cellular S values. Society of Nuclear Medicine, Reston

    Google Scholar 

  • Gundersen GG, Worman HJ (2013) Nuclear positioning. Cell 152:1376–1389. https://doi.org/10.1016/j.cell.2013.02.031

    Article  Google Scholar 

  • Hindorf C, Chittenden S, Causer L, Lewington VJ, Mäcke HR, Flux GD (2007) Dosimetry for 90Y-DOTATOC therapies in patients with neuroendocrine tumors. Cancer Biother Radiopharm 22:130–135. https://doi.org/10.1089/cbr.2007.306

    Article  Google Scholar 

  • Howell RW (1992) Radiation spectra for Auger-electron emitting radionuclides: report No. 2 of AAPM nuclear medicine task group No. 6. Med Phys 19:1371–1383. https://doi.org/10.1118/1.596927

    Article  Google Scholar 

  • Howell RW (2008) Auger processes in the 21st century. Int J Radiat Biol 84:959–975. https://doi.org/10.1080/09553000802395527

    Article  Google Scholar 

  • Howell RW, Narra VR, Rao DV, Sastry KSR (1990) Radiobiological effects of intracellular polonium-210 alpha emissions: a comparison with Auger-emitters. Radiat Prot Dosim 31:325–328. https://doi.org/10.1093/oxfordjournals.rpd.a080690

    Article  Google Scholar 

  • Howell RW, Goddu SM, Rao DV (1998) Proliferation and the advantage of longer-lived radionuclides in radioimmunotherapy. Med Phys 25:37–42. https://doi.org/10.1118/1.598171

    Article  Google Scholar 

  • Howell RW, Wessels BW, Leovinger R, in collaboration with the MIRD committee, Society of Nuclear Medicine, Watson EE, Bolch WE, Brill AB, Charkes ND, Fisher DR, Hays MT, Howell RW, Robertson JS, Siegel JA, Thomas SR, Wessels BW (1999) The MIRD perspective 1999. J Nuc Med 40:3S-10S

    Google Scholar 

  • Incerti S, Baldacchino G, Bernal MA, Capra R, Champion C, Francis Z, Guèye P, Mantero A, Mascialino B, Moretto P, Nieminen P, Villagrasa C, Zacharatou C (2010a) The Geant4-DNA project. Int J Model Simul Sci Comput 01:157–178. https://doi.org/10.1142/S1793962310000122

    Article  Google Scholar 

  • Incerti S, Ivanchenko A, Karamitros M, Mantero A, Moretto P, Tran HN, Mascialino B, Champion C, Ivanchenko VN, Bernal MA, Francis Z, Villagrasa C, Baldacchino G, Guèye P, Capra R, Nieminen P, Zacharatou C (2010b) Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys 37:4692–4708. https://doi.org/10.1118/1.3476457

    Article  Google Scholar 

  • Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E (2016) Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med 32:1187–1200. https://doi.org/10.1016/j.ejmp.2016.09.007

    Article  Google Scholar 

  • Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, Meylan S, Min CH, Shin WG, Nieminen P, Sakata D, Tang N, Villagrasa C, Tran HN, Brown JMC (2018) Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project. Med Phys 45:e722. https://doi.org/10.1002/mp.13048

    Article  Google Scholar 

  • Kiss A, Horvath P, Rothballer A, Kutay U, Csucs G (2014) Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components. PLoS One 9:e93431. https://doi.org/10.1371/journal.pone.0093431

    Article  ADS  Google Scholar 

  • Kyriakou I, Incerti S, Francis Z (2015) Technical note: improvements in GEANT4 energy-loss model and the effect on low-energy electron transport in liquid water. Med Phys 42:3870–3876. https://doi.org/10.1118/1.4921613

    Article  Google Scholar 

  • Kyriakou I, Šefl M, Nourry V, Incerti S (2016) The impact of new Geant4-DNA cross section models on electron track structure simulations in liquid water. J Appl Phys 119:194902. https://doi.org/10.1063/1.4950808

    Article  ADS  Google Scholar 

  • Kyriakou I, Emfietzoglou D, Ivanchenko V, Bordage MC, Guatelli S, Lazarakis P, Tran HN, Incerti S (2017) Microdosimetry of electrons in liquid water using the low-energy models of Geant4. J Appl Phys 122:024303. https://doi.org/10.1063/1.4992076

    Article  ADS  Google Scholar 

  • Lampe N, Karamitros M, Breton V, Brown JMC, Kyriakou I, Sakata D, Sarramia D, Incerti S (2018) Mechanistic DNA damage simulations in Geant4-DNA part 1: a parameter study in a simplified geometry. Phys Med 48:135–145. https://doi.org/10.1016/j.ejmp.2018.02.011

    Article  Google Scholar 

  • Liamsuwan T, Emfietzoglou D, Uehara S, Nikjoo H (2012) Microdosimetry of low-energy electrons. Int J Radiat Biol 88:899–907. https://doi.org/10.3109/09553002.2012.699136

    Article  Google Scholar 

  • Nettleton JS, Lawson RS (1996) Cellular dosimetry of diagnostic radionuclides for spherical and ellipsoidal geometry. Phys Med Biol 41:1845–1854. https://doi.org/10.1088/0031-9155/41/9/018

    Article  Google Scholar 

  • Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA (2006) Track-structure codes in radiation research. Rad Meas 41:1052–1074. https://doi.org/10.1016/j.radmeas.2006.02.001

    Article  Google Scholar 

  • Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist R, Uehara S (2016) DNA damage and response—a review. Rep Prog Phys 79:116601. https://doi.org/10.1088/0034-4885/79/11/116601

    Article  ADS  Google Scholar 

  • Pouget JP, Santoro L, Raymond L, Chouin N, Bardiès M, Bascoul-Mollevi C, Huguet H, Azria D, Kotzki PO, Pèlegrin M, Vivès E, Pèlegrin A (2008) Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res 170:192–200. https://doi.org/10.1667/RR1359.1

    Article  ADS  Google Scholar 

  • Rojas-Calderón EL, Torres-García E, Ávila O (2014) Dose per unit cumulated activity (S values) for e and beta emitting radionuclides in cancer cell models calculated by Monte Carlo simulation. Appl Radiat Isot 90:229–233. https://doi.org/10.1016/j.apradiso.2014.04.012

    Article  Google Scholar 

  • Rossi HH (1976) Microdosimetry and the effects of small doses of radiation. IEEE Trans Nucl Sci 23:1417–1421. https://doi.org/10.1109/TNS.1976.4328493

    Article  ADS  Google Scholar 

  • Šefl M, Incerti S, Papamichael G, Emfietzoglou D (2015) Calculation of cellular S values using Geant4-DNA: the effect of cell geometry. Appl Radiat Isot 104:113–123. https://doi.org/10.1016/j.apradiso.2015.06.027

    Article  Google Scholar 

  • Šefl M, Kyriakou I, Emfietzoglou D (2016) Technical Note: impact of cell repopulation and radionuclide uptake phase on cell survival. Med Phys 43:2715–2720. https://doi.org/10.1118/1.4948504

    Article  Google Scholar 

  • Siragusa M, Baiocco G, Fredericia PM (2017) The COOLER code: a novel analytical approach to calculate subcellular energy deposition by internal electron emitters. Radiat Res 182:204–220. https://doi.org/10.1667/RR14683.1

    Article  ADS  Google Scholar 

  • Taborda A, Benabdallah N, Desbrée A (2016) Dosimetry at the sub-cellular scale of Auger-electron emitter Tc-99m in a mouse single thyroid follicle. Appl Radiat Isot 108:58–63. https://doi.org/10.1016/j.apradiso.2015.12.010

    Article  Google Scholar 

  • Vaziri B, Wu H, Dhawan AP, Du P, Howell RW (2014) MIRD pamphlet No. 25: MIRDcell v2.0 software tool for dosimetric analysis of biologic response of multicellular populations. J Nucl Med 55:1557–1564. https://doi.org/10.2967/jnumed.113.131037

    Article  Google Scholar 

  • Yeong CH, Cheng M, Ng KH (2014) Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 15:845–863. https://doi.org/10.1631/jzus.B1400131

    Article  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payvand Taherparvar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, R., Taherparvar, P. Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values. Radiat Environ Biophys 58, 353–371 (2019). https://doi.org/10.1007/s00411-019-00788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00788-z

Keywords

Navigation