Skip to main content
Log in

Super-resolution techniques for biomedical applications and challenges

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Super-resolution (SR) techniques have revolutionized the field of biomedical applications by detailing the structures at resolutions beyond the limits of imaging or measuring tools. These techniques have been applied in various biomedical applications, including microscopy, magnetic resonance imaging (MRI), computed tomography (CT), X-ray, electroencephalogram (EEG), ultrasound, etc. SR methods are categorized into two main types: traditional non-learning-based methods and modern learning-based approaches. In both applications, SR methodologies have been effectively utilized on biomedical images, enhancing the visualization of complex biological structures. Additionally, these methods have been employed on biomedical data, leading to improvements in computational precision and efficiency for biomedical simulations. The use of SR techniques has resulted in more detailed and accurate analyses in diagnostics and research, essential for early disease detection and treatment planning. However, challenges such as computational demands, data interpretation complexities, and the lack of unified high-quality data persist. The article emphasizes these issues, underscoring the need for ongoing development in SR technologies to further improve biomedical research and patient care outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li Y, Sixou B, Peyrin F. A review of the deep learning methods for medical images super resolution problems. IRBM. 2021;42(2):120–33. https://doi.org/10.1016/j.irbm.2020.08.004.

    Article  Google Scholar 

  2. Wang X, Yu K, Wu S, Gu J, Liu Y, et al. ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé L, Roth S, et al., editors. Computer vision—ECCV 2018 workshops. Cham: Springer; 2019. p. 63–79. https://doi.org/10.1007/978-3-030-11021-5_5.

    Chapter  Google Scholar 

  3. Nie W. BSD100, Set5, Set14, Urban100 datasets. https://figshare.com/articles/dataset/BSD100_Set5_Set14_Urban100/21586188.https://doi.org/10.6084/m9.figshare.21586188.v1. Accessed 07 Dec 2023.

  4. Brain tumor MRI dataset. https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset. Accessed 07 Dec 2023.

  5. Breast ultrasound images dataset. https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset. Accessed 07 Dec 2023.

  6. Chest CT-scan images dataset. https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images. Accessed 07 Dec 2023.

  7. Chest X-ray images. https://www.kaggle.com/datasets/tolgadincer/labeled-chest-xray-images. Accessed 07 Dec 2023.

  8. Alpaydin E. Machine learning. Cambridge: The MIT Press; 2016.

    Google Scholar 

  9. Li Z, Dewaraja YK, Fessler JA. Training End-to-End unrolled iterative neural networks for SPECT image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2023;7(4):410–20. https://doi.org/10.1109/trpms.2023.3240934.

    Article  Google Scholar 

  10. He Z, Zhu YN, Chen Y, Chen Y, He Y, et al. A deep unrolled neural network for real-time MRI-guided brain intervention. Nat Commun. 2023;14(1):8257. https://doi.org/10.1038/s41467-023-43966-w.

    Article  Google Scholar 

  11. Yan Q, Liu L, Mei L, Learning unrolling-based neural network for magnetic resonance imaging reconstruction. In: Image analysis and processing—ICIAP, 21st international conference, Lecce, Italy, May 23–27, 2022, Proceedings, Part I Springer. Berlin. 2022;124–36. https://doi.org/10.1007/978-3-031-06427-2_11.

  12. Souza R, Frayne R. A hybrid frequency-domain/image-domain deep network for magnetic resonance image reconstruction. In: 2019 32nd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI); 2019. p. 257–264.https://doi.org/10.1109/SIBGRAPI.2019.00042.

  13. Ye JC, Han Y, Cha E. Deep convolutional framelets: A general deep learning framework for inverse problems. SIAM J Imaging Sci. 2018;11(2):991–1048. https://doi.org/10.1137/17M1141771.

    Article  MathSciNet  Google Scholar 

  14. Ali HM. High-Resolution Neuroimaging, In: Halefoğlu AM. edotor, IntechOpen, Rijeka, chap. 7; 2018. https://doi.org/10.5772/intechopen.72427.

  15. Chung H, Ye JC. Score-based diffusion models for accelerated MRI. Med Image Anal. 2022;80: 102479. https://doi.org/10.1016/j.media.2022.102479.

    Article  Google Scholar 

  16. Xiang T, Yurt M, Syed AB, Setsompop K, Chaudhari A. DDM\(^2\): Self-supervised diffusion MRI denoising with generative diffusion models. In: The eleventh international conference on learning representations; 2023. https://openreview.net/forum?id=0vqjc50HfcC.

  17. Zein ME, Laz WE, Laza M, Wazzan T, Kaakour I, et al. A deep learning framework for denoising MRI images using autoencoders. In: 2023 5th international conference on bio-engineering for smart technologies (BioSMART); 2023. p. 1–4. https://doi.org/10.1109/BioSMART58455.2023.10162068.

  18. Ben Yedder H, Cardoen B, Hamarneh G. Deep learning for biomedical image reconstruction: a survey. Artif Intell Rev. 2021;54(1):215–51. https://doi.org/10.1007/s10462-020-09861-2.

    Article  Google Scholar 

  19. Kaur H, Rani J. MRI brain image enhancement using histogram equalization techniques. In: 2016 international conference on wireless communications, signal processing and networking (WiSPNET). 2016. p. 770–773. https://doi.org/10.1109/WiSPNET.2016.7566237.

  20. Kalyani J, Chakraborty M. Contrast enhancement of MRI images using histogram equalization techniques. In: 2020 International conference on computer, electrical & communication engineering (ICCECE); 2020. p. 1–5. https://doi.org/10.1109/ICCECE48148.2020.9223088.

  21. Zimmerman J, Pizer S, Staab E, Perry J, McCartney W, et al. An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging. 1988;7(4):304–12. https://doi.org/10.1109/42.14513.

    Article  Google Scholar 

  22. Anand S, Shantha R, Selva K. Sharpening enhancement of computed tomography (CT) images using hyperbolic secant square filter. Optik. 2013;124(15):2121–4. https://doi.org/10.1016/j.ijleo.2012.06.026.

    Article  Google Scholar 

  23. Wang G, Ye JC, De Man B. Deep learning for tomographic image reconstruction. Nat Mach Intell. 2020;2(12):737–48. https://doi.org/10.1038/s42256-020-00273-z.

    Article  Google Scholar 

  24. Sarker IH. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci. 2021;2(6):420. https://doi.org/10.1007/s42979-021-00815-1.

    Article  Google Scholar 

  25. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58.

    MathSciNet  Google Scholar 

  26. Livni R. S. Shalev-Shwartz O. Shamir, On the computational efficiency of training neural networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger K, editors. Advances in neural information processing systems, vol. 27. Curran Associates Inc; 2014. https://proceedings.neurips.cc/paper_files/paper/2014/file/3a0772443a0739141292a5429b952fe6-Paper.pdf.

  27. Abd-Elmoniem K, Youssef AB, Kadah Y. Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans Biomed Eng. 2002;49(9):997–1014. https://doi.org/10.1109/TBME.2002.1028423.

    Article  Google Scholar 

  28. Burle B, Spieser L, Roger C, Casini L, Hasbroucq T, et al. Spatial and temporal resolutions of EEG: Is it really black and white? a scalp current density view. Int J Psychophysiol. 2015;97(3):210–20. https://doi.org/10.1016/j.ijpsycho.2015.05.004.

    Article  Google Scholar 

  29. Shen K, Lu H, Baig S, Wang MR. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging. Biomed Opt Express. 2017;8(11):4887–918. https://doi.org/10.1364/BOE.8.004887.

    Article  Google Scholar 

  30. Bono S, Konishi S. Temperature gradient sensing mechanism using liquid crystal droplets with 0.1-mk-level detection accuracy and high spatial resolution. Sci Rep. 2022;12(1):13733. https://doi.org/10.1038/s41598-022-18008-y.

    Article  Google Scholar 

  31. Zhang J, Sun K, Yang J, Hu Y, Gu Y, et al. A generalized dual-domain generative framework with hierarchical consistency for medical image reconstruction and synthesis. Commun Eng. 2023;2(1):72. https://doi.org/10.1038/s44172-023-00121-z.

    Article  Google Scholar 

  32. Wen Y, Chen L, Deng Y, Zhou C. Rethinking pre-training on medical imaging. J Vis Commun Image Represent. 2021;78: 103145. https://doi.org/10.1016/j.jvcir.2021.103145.

    Article  Google Scholar 

  33. Huang SC, Pareek A, Jensen M, Lungren MP, Yeung S, et al. Self-supervised learning for medical image classification: a systematic review and implementation guidelines. NPJ Digit Med. 2023;6(1):74. https://doi.org/10.1038/s41746-023-00811-0.

    Article  Google Scholar 

  34. Ahmad W, Ali H, Shah Z, Azmat S. A new generative adversarial network for medical images super resolution. Sci Rep. 2022;12(1):9533. https://doi.org/10.1038/s41598-022-13658-4.

    Article  Google Scholar 

  35. Michailovich O, Tannenbaum A. Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(1):64–78. https://doi.org/10.1109/TUFFC.2006.1588392.

    Article  Google Scholar 

  36. Moinuddin M, Khan S, Alsaggaf AU, Abdulaal MJ, Al-Saggaf UM, et al. Medical ultrasound image speckle reduction and resolution enhancement using texture compensated multi-resolution convolution neural network. Front Physiol. 2022. https://doi.org/10.3389/fphys.2022.961571.

    Article  Google Scholar 

  37. Niyas S, Pawan S, Anand Kumar M, Rajan J. Medical image segmentation with 3d convolutional neural networks: a survey. Neurocomputing. 2022;493:397–413. https://doi.org/10.1016/j.neucom.2022.04.065.

    Article  Google Scholar 

  38. de Leeuw ML, den Bouter G, Ippolito TPA, O’Reilly TPA, Remis RF, van Gijzen MB, et al. Deep learning-based single image super-resolution for low-field MR brain images. Sci Rep. 2022;12(1):6362. https://doi.org/10.1038/s41598-022-10298-6.

    Article  Google Scholar 

  39. Huang B, Xiao H, Liu W, Zhang Y, Wu H, et al. MRI super-resolution via realistic downsampling with adversarial learning. Phys Med Biol. 2021;66(20): 205004. https://doi.org/10.1088/1361-6560/ac232e.

    Article  Google Scholar 

  40. Jin C, Tanno R, Mertzanidou T, Panagiotaki E, Alexander DC. Learning to downsample for segmentation of ultra-high resolution images. In: International conference on learning representations; 2022. https://openreview.net/forum?id=HndgQudNb91.

  41. Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med. 2001;45(1):29–35.

    Article  Google Scholar 

  42. Greenspan H, Oz G, Kiryati N, Peled S. MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging. 2002;20(5):437–46. https://doi.org/10.1016/S0730-725X(02)00511-8.

    Article  Google Scholar 

  43. Zhai Y, Yao D. A radial-basis function based surface Laplacian estimate for a realistic head model. Brain Topogr. 2004;17(1):55–62. https://doi.org/10.1023/B:BRAT.0000047337.25591.32.

    Article  Google Scholar 

  44. Rousseau F, Glenn OA, Iordanova B, Rodriguez-Carranza C, Vigneron DB, et al. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol. 2006;13(9):1072–81. https://doi.org/10.1016/j.acra.2006.05.003.

    Article  Google Scholar 

  45. Dey N, Blanc-Feraud L, Zimmer C, Roux P, Kam Z, et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc Res Tech. 2006;69(4):260–6. https://doi.org/10.1002/jemt.20294.

    Article  Google Scholar 

  46. Joshi SH, Marquina A, Osher SJ, Dinov I, Van Horn JD, et al. MRI resolution enhancement using total variation regularization. In: 2009 IEEE international symposium on biomedical imaging: from nano to macro; 2009. p. 161–164. https://doi.org/10.1109/ISBI.2009.5193008.

  47. Akhtar P, Azhar F. A single image interpolation scheme for enhanced super resolution in bio-medical imaging. In: 2010 4th international conference on bioinformatics and biomedical engineering; 2010. p. 1–5. https://doi.org/10.1109/ICBBE.2010.5518164.

  48. Tieng QM, Cowin GJ, Reutens DC, Galloway GJ, Vegh V. MRI resolution enhancement: How useful are shifted images obtained by changing the demodulation frequency? Magn Reson Med. 2011;65(3):664–72. https://doi.org/10.1002/mrm.22653.

    Article  Google Scholar 

  49. Nallikuzhy JJ, Sharma LN, Dandapat S. Projection based approach for super-resolution ECG. In: 2013 IEEE 1st international conference on condition assessment techniques in electrical systems (CATCON); 2013. p. 270–274. https://doi.org/10.1109/CATCON.2013.6737511.

  50. Zhang H, Huang J, Ma J, Bian Z, Feng Q, et al. Iterative reconstruction for X-ray computed tomography using prior-image induced nonlocal regularization. IEEE Trans Biomed Eng. 2014;61:2367–78. https://doi.org/10.1109/TBME.2013.2287244.

    Article  Google Scholar 

  51. Nayak R, Harshavardhan S, Patra D. Morphology based iterative back-projection for super-resolution reconstruction of image. In: 2014 2nd international conference on emerging technology trends in electronics, communication and networking; 2014. p. 1–6. https://doi.org/10.1109/ET2ECN.2014.7044978.

  52. Yu W, Zeng L. \(\ell _0\) gradient minimization based image reconstruction for limited-angle computed tomography. PLoS ONE. 2015;10(7): e0130793. https://doi.org/10.1371/journal.pone.0130793.

    Article  Google Scholar 

  53. Abd-Almajeed A, Langevin F. Sub-pixel shifted acquisitions for super-resolution proton magnetic resonance spectroscopy (1h MRS) mapping. Magn Reson Imaging. 2015;33(4):448–58. https://doi.org/10.1016/j.mri.2015.01.002.

    Article  Google Scholar 

  54. Chan ACS, Ng HC, Bogaraju SCV, So HKH, Lam EY, et al. All-passive pixel super-resolution of time-stretch imaging. Sci Rep. 2017;7(1):44608. https://doi.org/10.1038/srep44608.

    Article  Google Scholar 

  55. Huang Y, Shao L, Frangi AF, Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding. In,. IEEE conference on computer vision and pattern recognition (CVPR). IEEE computer society, Los Alamitos, CA. USA. 2017;5787–96. https://doi.org/10.1109/CVPR.2017.613.

  56. Zhang J, Sun J, Chen Q, Li J, Zuo C. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci Rep. 2017;7(1):11777. https://doi.org/10.1038/s41598-017-11715-x.

    Article  Google Scholar 

  57. Song P, Trzasko JD, Manduca A, Huang R, Kadirvel R, et al. Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(2):149–67. https://doi.org/10.1109/TUFFC.2017.2778941.

    Article  Google Scholar 

  58. Liu C, Wu X, Yu X, Tang Y, Zhang J, et al. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction. Biomed Eng Online. 2018;17(1):114. https://doi.org/10.1186/s12938-018-0546-9.

    Article  Google Scholar 

  59. Bar-Zion A, Solomon O, Tremblay-Darveau C, Adam D, Eldar YC. SUSHI: Sparsity-based ultrasound super-resolution hemodynamic imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(12):2365–80. https://doi.org/10.1109/TUFFC.2018.2873380.

    Article  Google Scholar 

  60. Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2018;31(4):441–50. https://doi.org/10.1007/s10278-017-0033-z.

    Article  Google Scholar 

  61. Corley IA, Huang Y. Deep EEG super-resolution: Upsampling EEG spatial resolution with generative adversarial networks. In: 2018 IEEE EMBS international conference on biomedical & health informatics (BHI); 2018. p. 100–103. https://doi.org/10.1109/BHI.2018.8333379.

  62. Song TA, Chowdhury SR, Kim K, Gong K, Fakhri GE, et al. Super-resolution PET using a very deep convolutional neural network. In: 2018 IEEE nuclear science symposium and medical imaging conference proceedings (NSS/MIC); 2018. pp. 1–2. https://doi.org/10.1109/NSSMIC.2018.8824683.

  63. Xu J, Zhao Y, Li H, Zhang P. An image reconstruction model regularized by edge-preserving diffusion and smoothing for limited-angle computed tomography. Inverse Probl. 2019. https://doi.org/10.1088/1361-6420/ab08f9.

    Article  MathSciNet  Google Scholar 

  64. Iqbal Z, Nguyen D, Hangel G, Motyka S, Bogner W, et al. Super-resolution (1)H magnetic resonance spectroscopic imaging utilizing deep learning. Front Oncol. 2019;9:1010. https://doi.org/10.3389/fonc.2019.01010.

    Article  Google Scholar 

  65. Hatvani J, Basarab A, Tourneret JY, Gyöngy M, Kouamé D. A tensor factorization method for 3-D super resolution with application to dental CT. IEEE Trans Med. 2019;38(6):1524–31. https://doi.org/10.1109/TMI.2018.2883517.

    Article  Google Scholar 

  66. Kwon M, Han S, Kim K, Jun SC. Super-resolution for improving EEG spatial resolution using deep convolutional neural network—feasibility study. Sensors. 2019. https://doi.org/10.3390/s19235317.

    Article  Google Scholar 

  67. Song TA, Yang F, Chowdhury SR, Kim K, Johnson KA, et al. PET image deblurring and super-resolution with an MR-based joint entropy prior. IEEE Trans Comput. 2019;5(4):530–9. https://doi.org/10.1109/TCI.2019.2913287.

    Article  MathSciNet  Google Scholar 

  68. Salami P, Yousefi L. Far-field imaging beyond the diffraction limit using waves interference. J Lightwave Technol. 2020;38(8):2322–7. https://doi.org/10.1109/JLT.2020.2966735.

    Article  Google Scholar 

  69. Song TA, Chowdhury S, Yang F, Dutta J. Super-resolution PET imaging using convolutional neural networks. IEEE Trans Comput. 2020. https://doi.org/10.1109/TCI.2020.2964229.

    Article  Google Scholar 

  70. Song TA, Chowdhury SR, Yang F, Dutta J. PET image super-resolution using generative adversarial networks. Neural Netw. 2020;125:83–91. https://doi.org/10.1016/j.neunet.2020.01.029.

    Article  Google Scholar 

  71. Ayas S, Ekinci M. Microscopic image super resolution using deep convolutional neural networks. Multimedia Tools Appl. 2020;79(21):15397–415. https://doi.org/10.1007/s11042-019-7397-7.

    Article  Google Scholar 

  72. He L, Peng B, Yang T, Jiang J. An application of super-resolution generative adversary networks for quasi-static ultrasound strain elastography: A feasibility study. IEEE Access. 2020;8:65769–79. https://doi.org/10.1109/ACCESS.2020.2984733.

    Article  Google Scholar 

  73. Lyu Q, Shan H, Wang G. MRI super-resolution with ensemble learning and complementary priors. IEEE Trans Comput. 2020;6:615–24. https://doi.org/10.1109/TCI.2020.2964201.

    Article  Google Scholar 

  74. Zhu Y, Zhou Z, Liao G, Yuan K. CSRGAN: Medical image super-resolution using a generative adversarial network. In: 2020 IEEE 17th international symposium on biomedical imaging workshops (ISBI Workshops); 2020, pp. 1–4. https://doi.org/10.1109/ISBIWorkshops50223.2020.9153436.

  75. Chen R, Tang X, Zhao Y, Shen Z, Zhang M, et al. Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging. Nat Commun. 2023;14(1):2854. https://doi.org/10.1038/s41467-023-38452-2.

    Article  Google Scholar 

  76. Shah ZH, Müller M, Wang TC, Scheidig PM, Schneider A, et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photon Res. 2021;9(5):B168-81. https://doi.org/10.1364/PRJ.416437.

    Article  Google Scholar 

  77. van Sloun RJG, Solomon O, Bruce M, Khaing ZZ, Wijkstra H, et al. Super-resolution ultrasound localization microscopy through deep learning. IEEE Trans Med. 2021;40(3):829–39. https://doi.org/10.1109/TMI.2020.3037790.

    Article  Google Scholar 

  78. Park S, Gach HM, Kim S, Lee SJ, Motai Y. Autoencoder-inspired convolutional network-based super-resolution method in MRI. IEEE J Transl Eng Health Med. 2021;9:1–13. https://doi.org/10.1109/JTEHM.2021.3076152.

    Article  Google Scholar 

  79. Xia Y, Ravikumar N, Greenwood JP, Neubauer S, Petersen SE, et al. Super-resolution of cardiac MR cine imaging using conditional GANs and unsupervised transfer learning. Med Image Anal. 2021;71: 102037. https://doi.org/10.1016/j.media.2021.102037.

    Article  Google Scholar 

  80. Brown KG, Waggener SC, Redfern AD, Hoyt K. Faster super-resolution ultrasound imaging with a deep learning model for tissue decluttering and contrast agent localization. Biomed Phys Eng Express. 2021;7(6): 065035. https://doi.org/10.1088/2057-1976/ac2f71.

    Article  Google Scholar 

  81. Parteka-Tojek Z, Zhu JJ, Lee B, Jodkowska K, Wang P, et al. Super-resolution visualization of chromatin loop folding in human lymphoblastoid cells using interferometric photoactivated localization microscopy. Sci Rep. 2022;12(1):8582. https://doi.org/10.1038/s41598-022-12568-9.

    Article  Google Scholar 

  82. Shit S, Zimmermann J, Ezhov I, Paetzold JC, Sanches AF, et al. SRflow: deep learning based super-resolution of 4D-flow MRI data. Front Artif Intell. 2022. https://doi.org/10.3389/frai.2022.928181.

    Article  Google Scholar 

  83. Marini M, Bouzin M, Scodellaro R, D’Alfonso L, Sironi L, et al. Quantitative active super-resolution thermal imaging: The melanoma case study. Biomol Concepts. 2022;13(1):242–55. https://doi.org/10.1515/bmc-2022-0015.

    Article  Google Scholar 

  84. Chi J, Sun Z, Wang H, Lyu P, Yu X, et al. CT image super-resolution reconstruction based on global hybrid attention. Comput Biol Med. 2022;150: 106112. https://doi.org/10.1016/j.compbiomed.2022.106112.

    Article  Google Scholar 

  85. Yu H, Wang S, Fan Y, Wang G, Li J, et al. Large-factor micro-CT super-resolution of bone microstructure. Front Phys. 2022. https://doi.org/10.3389/fphy.2022.997582.

    Article  Google Scholar 

  86. Chemli Y, Tétrault MA, Marin T, Normandin MD, Bloch I, et al. Super-resolution in brain positron emission tomography using a real-time motion capture system. Neuroimage. 2023;272: 120056. https://doi.org/10.1016/j.neuroimage.2023.120056.

    Article  Google Scholar 

  87. Qiao C, Li D, Liu Y, Zhang S, Liu K, et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat Biotechnol. 2023;41(3):367–77. https://doi.org/10.1038/s41587-022-01471-3.

    Article  Google Scholar 

  88. Li S, Wang G. Modified kernel MLAA using autoencoder for PET-enabled dual-energy CT. Philos Trans R Soc. 2021;379(2204):20200204. https://doi.org/10.1098/rsta.2020.0204.

    Article  Google Scholar 

  89. Kozhinov AN, Johnson A, Nagornov KO, Stadlmeier M, Martin WL, et al. Super-resolution mass spectrometry enables rapid, accurate, and highly multiplexed proteomics at the MS2 level. Anal Chem. 2023;95(7):3712–9. https://doi.org/10.1021/acs.analchem.2c04742.

    Article  Google Scholar 

  90. Liao T, Ren Z, Chai Z, Yuan M, Miao C, et al. A super-resolution strategy for mass spectrometry imaging via transfer learning. Nat Mach Intell. 2023;5(6):656–68. https://doi.org/10.1038/s42256-023-00677-7.

    Article  Google Scholar 

  91. Chen K, Choudhary A, Sandler SE, Maffeo C, Ducati C, et al. Super-resolution detection of DNA nanostructures using a nanopore. Adv Mater. 2023;35(12):2207434. https://doi.org/10.1002/adma.202207434.

    Article  Google Scholar 

  92. Senalp FM, Ceylan M. A new approach for super-resolution and classification applications on neonatal thermal images. Quant Infrared Thermogr J. 2023. https://doi.org/10.1080/17686733.2023.2179282.

    Article  Google Scholar 

  93. Chen TM, Tsai YH, Tseng HH, Liu KC, Chen JY, et al. SRECG: ECG signal super-resolution framework for portable/wearable devices in cardiac arrhythmias classification. IEEE Trans Consum Electron. 2023. https://doi.org/10.1109/TCE.2023.3237715.

    Article  Google Scholar 

  94. Shin M, Peng Z, Kim HJ, Yoo SS, Yoon K. Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation. Comput Methods Programs Biomed. 2023;237: 107591. https://doi.org/10.1016/j.cmpb.2023.107591.

    Article  Google Scholar 

  95. Li H, Huang Y, Kuang C, Liu X. Method of super-resolution based on array detection and maximum-likelihood estimation. Appl Opt. 2016;55(35):9925–31. https://doi.org/10.1364/AO.55.009925.

    Article  Google Scholar 

  96. Capel D. Super-resolution: maximum Likelihood and related approaches. London: Springer; 2004. p. 81–136. https://doi.org/10.1007/978-0-85729-384-8_5.

    Book  Google Scholar 

  97. Zhang Y, Tao M, Yang K, Deng Z. Video superresolution reconstruction using iterative back projection with critical-point filters based image matching. Adv Multimed. 2015;2015: 285969. https://doi.org/10.1155/2015/285969.

    Article  Google Scholar 

  98. Mukamel EA, Babcock H, Zhuang X. Statistical deconvolution for superresolution fluorescence microscopy. Biophys J. 2012;102(10):2391–400. https://doi.org/10.1016/j.bpj.2012.03.070.

    Article  Google Scholar 

  99. Zhao W, Zhao S, Li L, Huang X, Xing S, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol. 2022;40(4):606–17. https://doi.org/10.1038/s41587-021-01092-2.

    Article  Google Scholar 

  100. Mahmoudzadeh AP, Kashou NH. Interpolation-based super-resolution reconstruction: effects of slice thickness. J Med Imaging. 2014;1(3): 034007. https://doi.org/10.1117/1.JMI.1.3.034007.

    Article  Google Scholar 

  101. Patil VH, Bormane DS. Interpolation for super resolution imaging. In: Sobh T, editor. Innovations and advanced techniques in computer and information sciences and engineering. Dordrecht: Springer; 2007. p. 483–9. https://doi.org/10.1007/978-1-4020-6268-1_85.

    Chapter  Google Scholar 

  102. Yu L, Cao S, He J, Sun B, Dai F. Single-image super-resolution based on regularization with stationary gradient fidelity. 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI); 2017. p. 1–5.https://doi.org/10.1109/CISP-BMEI.2017.8301942.

  103. Shi F, Cheng J, Wang L, Yap PT, Shen D. Low-rank total variation for image super-resolution. Med Image Comput Assist Interv. 2013;16(Pt 1):155–62. https://doi.org/10.1007/978-3-642-40811-3_20.

    Article  Google Scholar 

  104. Heintzmann R, Huser T. Super-resolution structured illumination microscopy. Chem Rev. 2017;117(23):13890–908. https://doi.org/10.1021/acs.chemrev.7b00218.

    Article  Google Scholar 

  105. Ščupáková K, Terzopoulos V, Jain S, Smeets D, Heeren RMA. A patch-based super resolution algorithm for improving image resolution in clinical mass spectrometry. Sci Rep. 2019;9(1):2915. https://doi.org/10.1038/s41598-019-38914-y.

    Article  Google Scholar 

  106. Prakash K, Diederich B, Heintzmann R, Schermelleh L. Super-resolution microscopy: a brief history and new avenues. Philos Trans R Soc. 2022;380(2220):20210110. https://doi.org/10.1098/rsta.2021.0110.

    Article  Google Scholar 

  107. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, et al. Super-resolution microscopy demystified. Nat Cell Biol. 2019;21(1):72–84. https://doi.org/10.1038/s41556-018-0251-8.

    Article  Google Scholar 

  108. Katti G, Ara SA, Shireen A. Magnetic resonance imaging (MRI)—a review. Int J Dent Clin. 2011;3(1):65–70. https://doi.org/10.1016/j.mrrev.2015.02.002.

    Article  Google Scholar 

  109. Gujar SK, Maheshwari S, Björkman-Burtscher I, Sundgren PC. Magnetic resonance spectroscopy. J Neuroophthalmol. 2005;25(3):217–26. https://doi.org/10.1097/01.wno.0000177307.21081.81.

    Article  Google Scholar 

  110. Buonocore MH, Maddock RJ. Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Rev Neurosci. 2015;26(6):609–32. https://doi.org/10.1515/revneuro-2015-0010.

    Article  Google Scholar 

  111. Jog A, Carass A, Prince JL. Self super-resolution for magnetic resonance images. Med Image Comput Comput Assist Interv. 2016;9902:553–60. https://doi.org/10.1007/978-3-319-46726-9_64.

    Article  Google Scholar 

  112. Röntgen WC. On a new kind of rays. Science. 1896;3(59):227–31. https://doi.org/10.1126/science.3.59.227.

    Article  Google Scholar 

  113. Dai WC, Wen Zhang H, Yu J, Jian H, Xu H, Chen H, et al. CT imaging and differential diagnosis of COVID-19. Can Assoc Radiol J. 2020;71(2):195–200. https://doi.org/10.1177/0846537120913033.

    Article  Google Scholar 

  114. Pisani P. Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques. World J Radiol. 2013;5(11):398. https://doi.org/10.4329/wjr.v5.i11.398.

    Article  Google Scholar 

  115. Lee JH, Kim YJ, Kim KG. Bone age estimation using deep learning and hand X-ray images. Biomed Eng Lett. 2020;10(3):323–31. https://doi.org/10.1007/s13534-020-00151-y.

    Article  Google Scholar 

  116. Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol. 2004;14(1):81–90. https://doi.org/10.1053/j.semradonc.2003.10.006.

    Article  Google Scholar 

  117. U.N.S.C. on the Effects of Atomic Radiation. Sources and effects of ionizing radiation, United Nations Scientific committee on the effects of atomic radiation (UNSCEAR) 2000 Report, Volume I. United Nations; 2000. https://www.un-ilibrary.org/content/books/9789210582483.

  118. Sano Y, Mori T, Goto T, Hirano S, Funahashi K. Super-resolution method and its application to medical image processing. 2017 IEEE 6th global conference on consumer electronics (GCCE); 2017. p. 1–2. https://doi.org/10.1109/GCCE.2017.8229301.

  119. Yan Z, Li J, Lu Y, Yan H, Zhao Y. Super resolution in CT. Int J Imaging Syst Technol. 2015;25(1):92–101. https://doi.org/10.1002/ima.22125.

    Article  Google Scholar 

  120. Alauddin MM. Positron emission tomography (PET) imaging with (18) F-based radiotracers. Am J Nucl Med Mol Imaging. 2011;2(1):55–76.

    Google Scholar 

  121. Ito M, Hong SJ, Lee JS. Positron emission tomography (PET) detectors with depth-of-interaction (DOI) capability. Biomed Eng Lett. 2011;1(2):70–81. https://doi.org/10.1007/s13534-011-0019-6.

    Article  Google Scholar 

  122. Crişan G, Moldovean-Cioroianu NS, Timaru DG, Andrieş G, Căinap C, et al. Radiopharmaceuticals for PET and SPECT imaging: a literature review over the last decade. Int J Mol Sci. 2022;23(9):5023. https://doi.org/10.3390/ijms23095023.

    Article  Google Scholar 

  123. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55–69. https://doi.org/10.1053/j.seminoncol.2010.11.012.

    Article  Google Scholar 

  124. Shukla AK, Kumar U. Positron emission tomography: An overview. J Med Phys. 2006;31(1):13–21. https://doi.org/10.4103/0971-6203.25665.

    Article  Google Scholar 

  125. Ahn IJ, Kim JH, Chang Y, Nam WH, Ra JB. Super-resolution reconstruction of 3D PET images using two respiratory-phase low-dose CT images. IEEE Trans Radiat Plasma Med Sci. 2017;1(1):46–55. https://doi.org/10.1109/TNS.2016.2611624.

    Article  Google Scholar 

  126. Zhu Y, Spencer BA, Xie Z, Leung EK, Bayerlein R, et al. Super-resolution reconstruction of \(\gamma \)-ray CT images for PET-enabled dual-energy CT imaging. In: Yu L, Fahrig R, Sabol JM, editors., et al., Medical imaging 2023: physics of medical imaging. international society for optics and photonics, vol. 124631. SPIE; 2023. p. 124631F. https://doi.org/10.1117/12.2654431.

  127. Wells PNT, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface. 2011;8(64):1521–49. https://doi.org/10.1098/rsif.2011.0054.

    Article  Google Scholar 

  128. Ng A, Swanevelder J. Resolution in ultrasound imaging. CEACCP. 2011;11(5):186–92.

    Google Scholar 

  129. Cox B, Beard P. Super-resolution ultrasound. Nature. 2015;527(7579):451–2. https://doi.org/10.1038/527451a.

    Article  Google Scholar 

  130. Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527(7579):499–502. https://doi.org/10.1038/nature16066.

    Article  Google Scholar 

  131. Viessmann OM, Eckersley RJ, Christensen-Jeffries K, Tang MX, Dunsby C. Acoustic super-resolution with ultrasound and microbubbles. Phys Med Biol. 2013;58(18):6447–58. https://doi.org/10.1088/0031-9155/58/18/6447.

    Article  Google Scholar 

  132. Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikr Anat. 1873;9(1):413–68. https://doi.org/10.1007/BF02956173.

    Article  Google Scholar 

  133. Yu J, Lavery L, Kim K. Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci Rep. 2018;8(1):13918. https://doi.org/10.1038/s41598-018-32235-2.

    Article  Google Scholar 

  134. Mathon B, Clemenceau S. The Temporal Lobe. In: Miceli G, Bartolomeo P, Navarro V, editors. Handbook of clinical neurology, vol. 187. Amsterda: Elsevier; 2022. p. 531–56. https://doi.org/10.1016/B978-0-12-823493-8.00007-9.

  135. Lerosey G, de Rosny J, Tourin A, Fink M. Focusing beyond the diffraction limit with far-field time reversal. Science. 2007;315(5815):1120–2. https://doi.org/10.1126/science.1134824.

    Article  Google Scholar 

  136. Chen S, Moitra A. Algorithmic foundations for the diffraction limit. In: Proceedings of the 53rd annual ACM SIGACT symposium on theory of computing (association for computing machinery, New York, NY, USA, 2021), STOC; 2021. p. 490–503. https://doi.org/10.1145/3406325.3451078.

  137. Kim M, Rho J. Metamaterials and imaging. Nano Converg. 2015;2(1):22. https://doi.org/10.1186/s40580-015-0053-7.

    Article  Google Scholar 

  138. Zemzemi C, Zorgani A, Daunizeau L, Belabhar S, Souchon R, et al. Super-resolution limit of shear-wave elastography. EPL. 2020;129(3):34002. https://doi.org/10.1209/0295-5075/129/34002.

    Article  Google Scholar 

  139. Krikler DM. Historical aspects of electrocardiography. Cardiol Clin. 1987;5(3):349–55. https://doi.org/10.1016/S0733-8651(18)30525-3.

    Article  Google Scholar 

  140. Rundo F, Conoci S, Ortis A, Battiato S. An advanced bio-inspired PhotoPlethysmoGraphy (PPG) and ECG pattern recognition system for medical assessment. Sensors. 2018. https://doi.org/10.3390/s18020405.

    Article  Google Scholar 

  141. Rashed-Al-Mahfuz M, Moni MA, Lio’ P, Islam SMS, Berkovsky S, et al. Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions. Biomed Eng Lett. 2021;11(2):147–62. https://doi.org/10.1007/s13534-021-00185-w.

    Article  Google Scholar 

  142. Rautaharju PM, Surawicz B, Gettes LS, Bailey JJ, Childers R, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval. J Am Coll Cardiol. 2009;53(11):982–91. https://doi.org/10.1016/j.jacc.2008.12.014.

    Article  Google Scholar 

  143. Light GA, Williams LE, Minow F, Sprock J, Rissling A, et al. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr Protoc Neurosci Chapter 6, Unit. 2010;6(25):1–24. https://doi.org/10.1002/0471142301.ns0625s52.

  144. Biasiucci A, Franceschiello B, Murray MM. Electroencephalography. Curr Biol. 2019;29(3):R80-5. https://doi.org/10.1016/j.cub.2018.11.052.

    Article  Google Scholar 

  145. Raez MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol Proced Online. 2006;8:11–35. https://doi.org/10.1251/bpo115.

    Article  Google Scholar 

  146. Hu Y, Cheng Z, Fan X, Liang Z, Zhai X. Optimizing the quality of Fourier single-pixel imaging via generative adversarial network. Optik. 2021;227: 166060. https://doi.org/10.1016/j.ijleo.2020.166060.

    Article  Google Scholar 

  147. Wenwen M, Dongfeng S, Jian H, Kee Y, Yingjian W, et al. Sparse Fourier single-pixel imaging. Opt Express. 2019;27(22):31490–503. https://doi.org/10.1364/OE.27.031490.

    Article  Google Scholar 

  148. Srinivasan R, Nunez PL, Tucker DM, Silberstein RB, Cadusch PJ. Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topogr. 1996;8(4):355–66. https://doi.org/10.1007/BF01186911.

    Article  Google Scholar 

  149. Michel CM, Brunet D. EEG source imaging: a practical review of the analysis steps. Front Neurol. 2019. https://doi.org/10.3389/fneur.2019.00325.

    Article  Google Scholar 

  150. Somani S, Russak AJ, Richter F, Zhao S, Vaid A, et al. Deep learning and the electrocardiogram: review of the current state-of-the-art. Europace. 2021;23(8):1179–91. https://doi.org/10.1093/europace/euaa377.

    Article  Google Scholar 

  151. Xie L, Li Z, Zhou Y, He Y, Zhu J. Computational diagnostic techniques for electrocardiogram signal analysis. Sensors. 2020. https://doi.org/10.3390/s20216318.

    Article  Google Scholar 

  152. Wang H, Zuo S, Cerezo-Sánchez M, Arekhloo NG, Nazarpour K, et al. Wearable super-resolution muscle–machine interfacing. Front Neurosci. 2022. https://doi.org/10.3389/fnins.2022.1020546.

    Article  Google Scholar 

  153. Karhana S, Bhat M, Ninawe A, Dinda AK. Biomedical imaging instrumentation. In: Suar M, Misra N, Bhavesh NS, editors. Primers in biomedical imaging devices and systems. Cambridge: Academic Press; 2022. p. 185–212. https://doi.org/10.1016/B978-0-323-85650-8.00008-5.

    Chapter  Google Scholar 

  154. Bond C, Santiago-Ruiz AN, Tang Q, Lakadamyali M. Technological advances in super-resolution microscopy to study cellular processes. Mol Cell. 2022;82(2):315–32. https://doi.org/10.1016/j.molcel.2021.12.022.

    Article  Google Scholar 

  155. Sun N, Jia Y, Bai S, Li Q, Dai L, et al. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci. 2023;314: 102880. https://doi.org/10.1016/j.cis.2023.102880.

    Article  Google Scholar 

  156. Xu J, Ma H, Ma H, Jiang W, Mela CA, et al. Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis. Nat Commun. 2020;11(1):1899. https://doi.org/10.1038/s41467-020-15718-7.

    Article  Google Scholar 

  157. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, et al. Single-molecule localization microscopy. Nat Rev Methods Primers. 2021;1(1):39. https://doi.org/10.1038/s43586-021-00038-x.

    Article  Google Scholar 

  158. Birk UJ. Super-resolution microscopy of chromatin. Genes (Basel). 2019. https://doi.org/10.3390/genes10070493.

    Article  Google Scholar 

  159. West JA, Mito M, Kurosaka S, Takumi T, Tanegashima C, et al. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol. 2016;214(7):817–30. https://doi.org/10.1083/jcb.201601071.

    Article  Google Scholar 

  160. Shim SH. Super-resolution microscopy of genome organization. Genes Genom. 2021;43(3):281–7. https://doi.org/10.1007/s13258-021-01044-9.

    Article  Google Scholar 

  161. Castells-Garcia A, Ed-daoui I, González-Almela E, Vicario C, Ottestrom J, et al. Super resolution microscopy reveals how elongating RNA polymerase II and nascent RNA interact with nucleosome clutches. Nucleic Acids Res. 2021;50(1):175–90. https://doi.org/10.1093/nar/gkab1215.

    Article  Google Scholar 

  162. Gagnon L. Imaging the genome in 3D at super resolution. Microscopy Today. 2020;28(6):18–26. https://doi.org/10.1017/S1551929520001546.

    Article  Google Scholar 

  163. Reinhard S, Aufmkolk S, Sauer M, Doose S. Registration and visualization of correlative super-resolution microscopy data. Biophys J. 2019;116(11):2073–8. https://doi.org/10.1016/j.bpj.2019.04.029.

    Article  Google Scholar 

  164. Ballard D. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981;13(2):111–22. https://doi.org/10.1016/0031-3203(81)90009-1.

    Article  Google Scholar 

  165. Han K, Hua X, Vasani V, Kim GAR, Liu W, et al. 3D super-resolution live-cell imaging with radial symmetry and Fourier light-field microscopy. Biomed Opt Express. 2022;13(11):5574–84. https://doi.org/10.1364/BOE.471967.

    Article  Google Scholar 

  166. Torres-García E, Pinto-Cámara R, Linares A, Martínez D, Abonza V, et al. Extending resolution within a single imaging frame. Nat Commun. 2022;13(1):7452. https://doi.org/10.1038/s41467-022-34693-9.

    Article  Google Scholar 

  167. Shaked E. Dolui S, Michailovich OV. Regularized Richardson-Lucy algorithm for reconstruction of Poissonian medical images. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. 2011. p. 1754–1757. https://doi.org/10.1109/ISBI.2011.5872745.

  168. Lambert TJ, Waters JC. Navigating challenges in the application of superresolution microscopy. J Cell Biol. 2016;216(1):53–63. https://doi.org/10.1083/jcb.201610011.

    Article  Google Scholar 

  169. Infante HG, Warren J, Chalmers J, Dent G, Todoli JL, et al. Glossary of methods and terms used in analytical spectroscopy (IUPAC recommendations 2019). Pure Appl Chem. 2021;93(6):647–776. https://doi.org/10.1515/pac-2019-0203.

    Article  Google Scholar 

  170. Miyamoto S, Hsu CC, Hamm G, Darshi M, Diamond-Stanic M, et al. Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator. EBioMedicine. 2016;7:121–34. https://doi.org/10.1016/j.ebiom.2016.03.033.

    Article  Google Scholar 

  171. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: A review of emerging advancements and future insights. Anal Chem. 2017;90(1):240–65. https://doi.org/10.1021/acs.analchem.7b04733.

    Article  Google Scholar 

  172. Goodwin RJA, Takats Z, Bunch J. A critical and concise review of mass spectrometry applied to imaging in drug discovery. SLAS Discov. 2020;25(9):963–76. https://doi.org/10.1177/2472555220941843.

    Article  Google Scholar 

  173. Qiu S, Cai Y, Yao H, Lin C, Xie Y, et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):132. https://doi.org/10.1038/s41392-023-01399-3.

    Article  Google Scholar 

  174. Kovac J. Foundations of spectroscopy (Oxford chemistry primers no. 78) (Duckett, Simon; Gilbert, Bruce). J Chem Educ. 2003;80(9):1006. https://doi.org/10.1021/ed080p1006.

  175. Jia H, Wang Y, Xu S. Super-resolution force spectroscopy reveals ribosomal motion at sub-nucleotide steps. Chem Commun. 2018;54:5883–6. https://doi.org/10.1039/C8CC02658K.

    Article  Google Scholar 

  176. Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, et al. Infrared thermography for temperature measurement and non-destructive testing. Sensors. 2014;14(7):12305–48. https://doi.org/10.3390/s140712305.

    Article  Google Scholar 

  177. Rakhunde MB, Gotarkar S, Choudhari SG. Thermography as a breast cancer screening technique: a review article. Cureus. 2022;14(11): e31251. https://doi.org/10.7759/cureus.31251.

    Article  Google Scholar 

  178. Marnissi MA, Fathallah A. GAN-based vision Transformer for high-quality thermal image enhancement. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops; 2023. p. 817–825. https://doi.org/10.1109/CVPRW59228.2023.00089.

  179. Dong C, Loy CC, He K, Tang X. Learning a deep convolutional network for image super-resolution. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision—ECCV 2014. Cham: Springer; 2014. p. 184–99. https://doi.org/10.1007/978-3-319-10593-2_13.

  180. Sun N, Li H. Super resolution reconstruction of images based on interpolation and full convolutional neural network and application in medical fields. IEEE Access. 2019;7:186470–9. https://doi.org/10.1109/ACCESS.2019.2960828.

    Article  Google Scholar 

  181. Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR); 2016. p. 1646–1654. https://doi.org/10.1109/CVPR.2016.182.

  182. Kim J, Lee JK, Lee KM. Deeply-recursive convolutional network for image super-resolution. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR); 2016. p. 1637–1645. https://doi.org/10.1109/CVPR.2016.181.

  183. Tai Y, Yang J, Liu X. Image super-resolution via deep recursive residual network. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR); 2017. p. 2790–2798. https://doi.org/10.1109/CVPR.2017.298.

  184. Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced deep residual networks for single image super-resolution. In: The IEEE conference on computer vision and pattern recognition (CVPR) workshops; 2017. https://doi.org/10.1109/CVPRW.2017.151.

  185. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE computer society, Los Alamitos, CA, USA. 2017; 105–14. https://doi.org/10.1109/CVPR.2017.19.

  186. Zhang K, Hu H, Philbrick K, Conte GM, Sobek J, et al. SOUP-GAN: super-resolution MRI using generative adversarial networks. Tomography. 2022;8(2):905–19. https://doi.org/10.3390/tomography8020073.

    Article  Google Scholar 

  187. Wang J, Chen Y, Wu Y, Shi J, Gee J. Enhanced generative adversarial network for 3D brain MRI super-resolution. In: 2020 IEEE winter conference on applications of computer vision (WACV); 2020. p. 3616–3625. https://doi.org/10.1109/WACV45572.2020.9093603.

  188. Sanchez I, Vilaplana V. Brain MRI super-resolution using 3D generative adversarial networks. Med Imaging Deep Learn. 2018. https://openreview.net/forum?id=rJevSbniM.

  189. Mahapatra D, Bozorgtabar B, Garnavi R. Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imaging Graph. 2019;71:30–9. https://doi.org/10.1016/j.compmedimag.2018.10.005.

    Article  Google Scholar 

  190. Ota J, Umehara K, Kershaw J, Kishimoto R, Hirano Y, et al. Super-resolution generative adversarial networks with static T2*WI-based subject-specific learning to improve spatial difference sensitivity in fMRI activation. Sci Rep. 2022;12(1):10319. https://doi.org/10.1038/s41598-022-14421-5.

    Article  Google Scholar 

  191. Zhang H, Goodfellow I, Metaxas D, Odena A. Self-attention generative adversarial networks; 2019. https://doi.org/10.48550/arXiv.1805.08318.

  192. Lu Z, Li J, Liu H, Huang C, Zhang L, Transformer for single image super-resolution. In: IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE computer society, Los Alamitos, CA, USA. 2022;456–65. https://doi.org/10.1109/CVPRW56347.2022.00061.

  193. Chen X, Wang X, Zhou J, Qiao Y, Dong C, Activating more pixels in image super-resolution transformer. In,. IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE computer society, Los Alamitos, CA, USA. 2023; 22367–77. https://doi.org/10.1109/CVPR52729.2023.02142.

  194. Du W, Tian S. Transformer and GAN-based super-resolution reconstruction network for medical images. Tsinghua Sci Technol. 2024;29(1):197–206. https://doi.org/10.26599/TST.2022.9010071.

    Article  Google Scholar 

  195. Puttagunta M, Subban R, Nelson Kennedy Babu C. SwinIR: transformer applied for medical image super-resolution. Procedia Comput Sci. 2022;204:907–13. https://doi.org/10.1016/j.procs.2022.08.110.

    Article  Google Scholar 

  196. Liang J, Cao J, Sun G, Zhang K, Gool LV, et al. SwinIR: image restoration using Swin Transformer., et al. IEEE/CVF international conference on computer vision workshops (ICCVW). IEEE computer society, Los Alamitos, CA, USA. 2021;2021:1833–44. https://doi.org/10.1109/ICCVW54120.2021.00210.

  197. Pujals S, Albertazzi L. Super-resolution microscopy for nanomedicine research. ACS Nano. 2019;13(9):9707–12. https://doi.org/10.1021/acsnano.9b05289.

    Article  Google Scholar 

  198. Westmoreland D, Shaw M, Grimes W, Metcalf DJ, Burden JJ, et al. Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders. J Thromb Haemost. 2016;14(4):839–49. https://doi.org/10.1111/jth.13269.

    Article  Google Scholar 

  199. Forigua C, Escobar M, Arbelaez P. SuperFormer: Volumetric transformer architectures for MRI super-resolution. In: Zhao C, Svoboda D, Wolterink JM, Escobar M, editors. Simulation and synthesis in medical imaging. Cham: Springer; 2022. p. 132–41. https://doi.org/10.1007/978-3-031-16980-9_13.

  200. Chen Y, Christodoulou AG, Zhou Z, Shi F, Xie Y, et al. MRI super-resolution with GAN and 3D multi-level DenseNet: smaller, faster, and better. CoRR; 2020. arXiv:2003.01217.

  201. Gong J, Jin Z, Chen H, He J, Zhang Y, et al. Super-resolution fluorescence microscopic imaging in pathogenesis and drug treatment of neurological disease. Adv Drug Deliv Rev. 2023;196: 114791. https://doi.org/10.1016/j.addr.2023.114791.

    Article  Google Scholar 

  202. Jiang C, Zhang Q, Fan R, Hu Z. Super-resolution CT image reconstruction based on dictionary learning and sparse representation. Sci Rep. 2018;8(1):8799. https://doi.org/10.1038/s41598-018-27261-z.

    Article  Google Scholar 

  203. Hu J, Zheng S, Wang B, Luo G, Huang W, et al. Super-resolution Swin Transformer and attention network for medical CT imaging. Biomed Res Int. 2022;2022:4431536. https://doi.org/10.1155/2022/4431536.

    Article  Google Scholar 

  204. Christensen-Jeffries K, Couture O, Dayton PA, Eldar YC, Hynynen K, et al. Super-resolution ultrasound imaging. Ultrasound Med Biol. 2020;46(4):865–91. https://doi.org/10.1016/j.ultrasmedbio.2019.11.013.

    Article  Google Scholar 

  205. Chen Q, Song H, Yu J, Kim K. Current development and applications of super-resolution ultrasound imaging. Sensors. 2021;21(7):2417. https://doi.org/10.3390/s21072417.

    Article  Google Scholar 

  206. Steeden JA, Quail M, Gotschy A, Mortensen KH, Hauptmann A, et al. Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn. 2020;22(1):56. https://doi.org/10.1186/s12968-020-00651-x.

    Article  Google Scholar 

  207. Ghosh D, Peng J, Brown K, Sirsi S, Mineo C, et al. Super-resolution ultrasound imaging of skeletal muscle microvascular dysfunction in an animal model of type 2 diabetes. J Ultrasound Med. 2019;38(10):2589–99. https://doi.org/10.1002/jum.14956.

    Article  Google Scholar 

  208. Wang L, Li D, Zhu Y, Tian L, Shan Y, Dual super-resolution learning for semantic segmentation. In: IEEE/CVF conference on computer vision and pattern recognition (CVPR). Los Alamitos, CA, USA. 2020; 773–3782. https://doi.org/10.1109/CVPR42600.2020.00383.

  209. Lai C, Li F, Li B, Jin S. Image super-resolution based on segmentation and classification with sparsity. In: 2016 2nd IEEE international conference on computer and communications (ICCC); 2016. p. 563–567. https://doi.org/10.1109/CompComm.2016.7924764.

  210. Zhang X, Xu G, Liao W, Wu X. Super-resolution for semantic segmentation. In: Jiang X, Tao W, Zeng D, Xie Y, editors., Fourteenth international conference on digital image processing (ICDIP 2022). vol. 12342, International society for optics and photonics. SPIE; 2022. p. 123421G. https://doi.org/10.1117/12.2643026.

  211. Juhong A, Li B, Yao CY, Yang CW, Agnew DW, et al. Super-resolution and segmentation deep learning for breast cancer histopathology image analysis. Biomed Opt Express. 2023;14(1):18–36. https://doi.org/10.1364/BOE.463839.

    Article  Google Scholar 

  212. Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging. 2019;32(4):582–96. https://doi.org/10.1007/s10278-019-00227-x.

    Article  Google Scholar 

  213. Zhang Y, Li K, Li K, Fu Y. MR image super-resolution with squeeze and excitation reasoning attention network. In: 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR); 2021. p. 13420–13429. https://doi.org/10.1109/CVPR46437.2021.01322.

  214. Georgescu M, Ionescu R, Miron A, Savencu O, Ristea N, Multimodal multi-head convolutional attention with various kernel sizes for medical image super-resolution. In, et al. IEEE/CVF winter conference on applications of computer vision (WACV). IEEE computer society, Los Alamitos, CA, USA. 2023;2023:2194–204. https://doi.org/10.1109/WACV56688.2023.00223.

  215. Knoll F, Holler M, Koesters T, Otazo R, Bredies K, et al. Joint MR-PET reconstruction using a multi-channel image regularizer. IEEE Trans Med. 2017;36(1):1–16. https://doi.org/10.1109/TMI.2016.2564989.

    Article  Google Scholar 

  216. Wagner P, Strodthoff N, Bousseljot RD, Kreiseler D, Lunze FI, et al. PTB-XL, a large publicly available electrocardiography dataset. Sci Data. 2020;7(1):154. https://doi.org/10.1038/s41597-020-0495-6.

    Article  Google Scholar 

  217. Nehme E, Weiss LE, Michaeli T, Shechtman Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica. 2018;5(4):458–64. https://doi.org/10.1364/OPTICA.5.000458.

    Article  Google Scholar 

  218. IXI dataset. http://brain-development.org/ixi-dataset/.

  219. Manjón JV, Coupé P, Buades A, Fonov VS, Collins DL, et al. Non-local MRI upsampling. Med Image Anal. 2010;14(6):784–92. https://doi.org/10.1016/j.media.2010.05.010.

    Article  Google Scholar 

  220. Hui Z, Wang X, Gao X. Fast and accurate single image super-resolution via information distillation network. In: 2018 IEEE/CVF conference on computer vision and pattern recognition; 2018. p. 723–731. https://doi.org/10.1109/CVPR.2018.00082.

  221. Shi J, Li Z, Ying S, Wang C, Liu Q, et al. MR image super-resolution via wide residual networks with fixed skip connection. IEEE J Biomed Health Inform. 2019;23(3):1129–40. https://doi.org/10.1109/JBHI.2018.2843819.

    Article  Google Scholar 

  222. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y. Residual dense network for image super-resolution. 2018 IEEE/CVF conference on computer vision and pattern recognition; 2018. p. 2472–2481. https://doi.org/10.1109/CVPR.2018.00262.

  223. Zhao X, Zhang Y, Tao Z, Zou X. Channel splitting network for single MR image super-resolution. IEEE Trans Image Process. 2018;28:5649–62. https://doi.org/10.1109/TIP.2019.2921882.

    Article  MathSciNet  Google Scholar 

  224. Feng CM, Yan Y, Fu H, Chen L, Xu Y, et al. Task transformer network for joint MRI reconstruction and super-resolution. In: de Bruijne M, Cattin PC, Cotin S, Padoy N, Speidel S, et al., editors. Medical image computing and computer assisted intervention—MICCAI 2021. Cham: Springer; 2021. p. 307–17. https://doi.org/10.1007/978-3-030-87231-1_30.

  225. Feng CM, Fu H, Yuan S, Xu Y, et al. Multi-contrast MRI super-resolution via a multi-stage integration network. In: de Bruijne M, Cattin PC, Cotin S, Padoy N, Speidel S, et al., editors. Medical image computing and computer assisted intervention—MICCAI 2021. Cham: Springer; 2021. p. 140–9.https://doi.org/10.1007/978-3-030-87231-1_14.

  226. Niu B, Wen W, Ren W, Zhang X, Yang L, et al. Single image super-resolution via a holistic attention network. In: Vedaldi A, Bischof H, Brox T, Frahm JM, editors., et al., Computer Vision—ECCV 2020. Cham: Springer; 2020. p. 191–207.https://doi.org/10.1007/978-3-030-58610-2_12.

  227. Woo S, Park J, Lee JY, Kweon IS. CBAM: Convolutional block attention module. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer VISION—ECCV 2018. Cham: Springer; 2018. p. 3–19.https://doi.org/10.1007/978-3-030-01234-2_1.

  228. Georgescu MI, Ionescu RT, Verga N. Convolutional neural networks with intermediate loss for 3D super-resolution of CT and MRI scans. IEEE Access. 2020;8:49112–24. https://doi.org/10.1109/ACCESS.2020.2980266.

    Article  Google Scholar 

  229. Chung H, Lee ES, Ye JC. MR image denoising and super-resolution using regularized reverse diffusion. IEEE Trans Med Imaging. 2023;42(4):922–34. https://doi.org/10.1109/TMI.2022.3220681.

    Article  Google Scholar 

  230. Mao Y, Jiang L, Chen X, Li C, et al. DisC-Diff: Disentangled conditional diffusion model for multi-contrast MRI super-resolution. In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, et al., editors. Medical image computing and computer assisted intervention—MICCAI 2023. Cham: Springer; 2023. p. 387–97. https://doi.org/10.1007/978-3-031-43999-5_37.

  231. Park J, Hwang D, Kim KY, Kang SK, Kim YK, et al. Computed tomography super-resolution using deep convolutional neural network. Phys Med Biol. 2018;63(14): 145011. https://doi.org/10.1088/1361-6560/aacdd4.

    Article  Google Scholar 

  232. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29. https://doi.org/10.1007/s13244-018-0639-9.

    Article  Google Scholar 

  233. Raghu M, Unterthiner T, Kornblith S, Zhang C, Dosovitskiy A. Do vision Transformers see like convolutional neural networks? In: Beygelzimer A, Dauphin Y, Liang P, Vaughan JW editors. Advances in neural information processing systems, 2021. https://openreview.net/forum?id=Gl8FHfMVTZu.

  234. Ma K, Tang C, Zhang W, Cui B, Ji K, et al. DC-CNN: Dual-channel convolutional neural networks with attention-pooling for fake news detection. Appl Intell. 2023;53(7):8354–69. https://doi.org/10.1007/s10489-022-03910-9.

    Article  Google Scholar 

  235. Zhang J, Zeng Y, Starly B. Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis and prognosis. SN Appl Sci. 2021;3(4):442. https://doi.org/10.1007/s42452-021-04427-5.

    Article  Google Scholar 

  236. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al. Attention is all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, et al., editors. Advances in neural information processing systems, vol. 30. Curran Associates Inc; 2017. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

  237. Aide N, Lasnon C, Desmonts C, Armstrong IS, Walker MD, et al. Advances in PET/CT technology: an update. Semin Nucl Med. 2022;52(3):286–301. https://doi.org/10.1053/j.semnuclmed.2021.10.005.

    Article  Google Scholar 

  238. Dutta J, Fakhri GE, Zhu X, Li Q. PET point spread function modeling and image deblurring using a PET/MRI joint entropy prior. 2015 IEEE 12th international symposium on biomedical imaging (ISBI); 2015. p. 1423–1426. https://doi.org/10.1109/ISBI.2015.7164143.

  239. Cocosco CA, Kollokian V, Kwan RKS, Evans AC. BrainWeb: online interface to a 3D MRI simulated brain database. NeuroImage. 1997.

  240. Pourbagian M, Ashrafizadeh A. Super-resolution of low-fidelity flow solutions via generative adversarial networks. Simulation. 2022;98(8):645–63. https://doi.org/10.1177/00375497211061260.

    Article  Google Scholar 

  241. Xu W, Grande Gutierrez N, McComb C. MegaFlow2D: A parametric dataset for machine learning super-resolution in computational fluid dynamics simulations. In: Proceedings of cyber-physical systems and internet of things week 2023. Association for computing machinery, New York, CPS-IoT Week ’23; 2023. p. 100–104. https://doi.org/10.1145/3576914.3587552.

  242. Bode M, Gauding M, Goeb D, Falkenstein T, Pitsch H. Applying physics-informed enhanced super-resolution generative adversarial networks to turbulent premixed combustion and engine-like flame kernel direct numerical simulation data. Proc Combust Inst. 2023;39(4):5289–98. https://doi.org/10.1016/j.proci.2022.07.254.

    Article  Google Scholar 

  243. Wu Y, Teufel B, Sushama L, Belair S, Sun L. Deep learning-based super-resolution climate simulator–emulator framework for urban heat studies. Geophys Res Lett. 2021. https://doi.org/10.1029/2021GL094737.

    Article  Google Scholar 

  244. Onishi R, Sugiyama D, Matsuda K. Super-resolution simulation for real-time prediction of urban micrometeorology. SOLA. 2019. https://doi.org/10.2151/sola.2019-032.

    Article  Google Scholar 

  245. Li Y, Ni Y, Croft RAC, Matteo TD, Bird S, et al. AI-assisted superresolution cosmological simulations. PNAS. 2021;118(19): e2022038118. https://doi.org/10.1073/pnas.2022038118.

    Article  Google Scholar 

  246. Kodi Ramanah D, Charnock T, Villaescusa-Navarro F, Wandelt BD. Super-resolution emulator of cosmological simulations using deep physical models. MNRAS. 2020;495(4):4227–36. https://doi.org/10.1093/mnras/staa1428.

    Article  Google Scholar 

  247. Wegel E, Göhler A, Lagerholm BC, Wainman A, Uphoff S, et al. Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison. Sci Rep. 2016;6(1):27290. https://doi.org/10.1038/srep27290.

    Article  Google Scholar 

  248. Garini Y, Vermolen BJ, Young IT. From micro to nano: recent advances in high-resolution microscopy. Curr Opin Biotechnol. 2005;16(1):3–12. https://doi.org/10.1016/j.copbio.2005.01.003.

    Article  Google Scholar 

  249. Durkee MS, Abraham R, Clark MR, Giger ML. Artificial intelligence and cellular segmentation in tissue microscopy images. Am J Pathol. 2021;191(10):1693–701. https://doi.org/10.1016/j.ajpath.2021.05.022.

    Article  Google Scholar 

  250. Mela CA, Liu Y. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images. BMC Bioinform. 2021;22(1):325. https://doi.org/10.1186/s12859-021-04245-x.

    Article  Google Scholar 

  251. Huang Y, Miyazaki T, Liu X, Omachi S. Infrared image super-resolution: systematic review, and future trends; 2022. https://doi.org/10.48550/arXiv.2212.12322.

  252. NAMIC dataset. https://www.na-mic.org/wiki/Downloads.

  253. BraTS dataset. https://www.med.upenn.edu/cbica/brats2020/data.html.

  254. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, et al. ChestX-ray: Hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common Thorax diseases. Cham: Springer; 2019. p. 369–92. https://doi.org/10.1007/978-3-030-13969-8_18.

  255. Mehta R, Filos A, Baid U, Sako C, McKinley R, et al. QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation-analysis of ranking scores and benchmarking results. J Mach Learn Biomed Imaging. 2022. https://doi.org/10.59275/j.melba.2022-354b.

    Article  Google Scholar 

  256. Bilic P, Christ P, Li HB, Vorontsov E, Ben-Cohen A, et al. The liver tumor segmentation benchmark (LiTS). Med Image Anal. 2023;84: 102680. https://doi.org/10.1016/j.media.2022.102680.

    Article  Google Scholar 

  257. Liang G, Fouladvand S, Zhang J, Brooks MA, Jacobs N, et al. Ganai: standardizing CT images using generative adversarial network with alternative improvement. 2019 IEEE international conference on healthcare informatics (ICHI) IEEE; 2019. p. 1–11. https://doi.org/10.1109/ICHI.2019.8904763.

  258. Kim C, Bekar O, Seo H, Park SM, Lee D. Computed tomography vertebral segmentation from multi-vendor scanner data. J Comput Design Eng. 2022;9(5):1650–64. https://doi.org/10.1093/jcde/qwac072.

    Article  Google Scholar 

Download references

Funding

The work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00220762), and in part by the Yonsei University Research Fund (Post Doc. Researcher Supporting Program) of 2023 (Project No.: 2023-12-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungho Yoon.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article includes studies involving human participants, which were conducted by one or more of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, M., Seo, M., Lee, K. et al. Super-resolution techniques for biomedical applications and challenges. Biomed. Eng. Lett. 14, 465–496 (2024). https://doi.org/10.1007/s13534-024-00365-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-024-00365-4

Keywords

Navigation