Skip to main content
Log in

Subduction relics in the subcontinental lithospheric mantle evidence from variation in the δ18O value of eclogite xenoliths from the Kaapvaal craton

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mantle eclogites are commonly accepted as evidence for ancient altered subducted oceanic crust preserved in the subcontinental lithospheric mantle (SCLM), yet the mechanism and extent of crustal recycling in the Archaean remains poorly constrained. In this study, we focus on the petrological and geochemical characteristics of 58 eclogite xenoliths from the Roberts Victor and Jagersfontein kimberlites, South Africa. Non-metasomatized samples preserved in the cratonic root have variable textures and comprise bimineralic (garnet (gt)–omphacite (cpx)), as well as kyanite (ky)- and corundum (cor)-bearing eclogites. The bimineralic samples were derived from a high-Mg variety, corresponding to depths of ~ 100–180 km, and a low-Mg variety corresponding to depths of ~ 180–250 km. The high-Al (ky-, cor-bearing) eclogites originated from the lowermost part of the cratonic root, and have the lowest REE abundances, and the most pronounced positive Eu and Sr anomalies. On the basis of the strong positive correlation between gt and cpx δ18O values (r2 = 0.98), we argue that δ18O values are unaffected by mantle processes or exhumation. The cpx and gt are in oxygen isotope equilibrium over a wide range in δ18O values (e.g., 1.1–7.6‰ in garnet) with a bi-modal distribution (peaks at ~ 3.6 and ~ 6.4‰) with respect to mantle garnet values (5.1 ± 0.3‰). Reconstructed whole-rock major and trace element compositions (e.g., MgO variation with respect to Mg#, Al2O3, LREE/HREE) of bimineralic eclogites are consistent with their protolith being oceanic crust that crystallized from a picritic liquid, marked by variable degrees of partial melt extraction. Kyanite and corundum-bearing eclogites, however, have compositions consistent with a gabbroic and pyroxene-dominated protolith, respectively. The wide range in reconstructed whole-rock δ18O values is consistent with a broadly picritic to pyroxene-rich cumulative sequence of depleted oceanic crust, which underwent hydrothermal alteration at variable temperatures. The range in δ18O values extends significantly lower than that of present day oceanic crust and Cretaceous ophiolites, and this might be due to a combination of lower δ18O values of seawater in the Archaean or a higher temperature of seawater–oceanic crust interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agashev AM, Pokhilenko LN, Pokhilenko NP, Shuchukina EV (2018) Geochemistry of eclogite xenoliths from the Udachnaya Kimberlite Pipe: section of ancient oceanic crust sampled. Lithos 314–315:187–200 https://doi.org/10.1016/j.lithos.2018.05.027

    Article  Google Scholar 

  • Alt JC, Bach W (2006) Oxygen isotopic composition of a section of lower oceanic crust, ODP Hole 735B. Geochem Geophys Geosyst. https://doi.org/10.1029/2006GC001385

    Article  Google Scholar 

  • Ater PC, Eggler DH, McCallum ME (1984) Petrology and geochemistry of mantle eclogite xenoliths from Colorado–Wyoming kimberlites: recycled ocean crust? In: J. K-P (ed) Kimberlites II: the mantle and the crust–mantle relationships. Elsevier, Amsterdam, pp 309–318

    Chapter  Google Scholar 

  • Aulbach S (2012) Craton nucleation and formation of thick lithospheric roots. Lithos 149:16–30. https://doi.org/10.1016/j.lithos.2012.02.011

    Article  Google Scholar 

  • Aulbach S, Jacob DE (2016) Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos 262:586–605. https://doi.org/10.1016/j.lithos.2016.07.026

    Article  Google Scholar 

  • Aulbach S, Viljoen KS (2015) Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: from convecting mantle source to palaeo-ocean floor and back. Earth Planet Sci Lett 431:274–286. https://doi.org/10.1016/j.epsl.2015.08.039

    Article  Google Scholar 

  • Aulbach S, Shirey SB, Stached T, Creighton S, Muehlenbachs K, Harris JW (2009) Diamond formation episodes at the southern margin of the Kaapvaal Craton: Re–Os systematics of sulfide inclusions from the Jagersfontein Mine. Contrib Miner Petrol 157:525–540. https://doi.org/10.1007/s00410-008-0350-9

    Article  Google Scholar 

  • Aulbach S, O’Reilly SY, Pearson NJ (2011) Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf–Nb/Ta variability. Contrib Miner Petrol 162:1047–1062. https://doi.org/10.1007/s00410-011-0639-y

    Article  Google Scholar 

  • Aulbach S, Gerdes A, Viljoen KS (2016) Formation of diamondiferous kyanite-eclogite in a subduction mélange. Geochim Cosmochim Acta 179:156–176. https://doi.org/10.1016/j.gca.2016.01.038

    Article  Google Scholar 

  • Aulbach S, Jacob DE, Cartigny P, Stern RA, Simonetti SS, Wörner G, Viljoen KS (2017a) Eclogite xenoliths from Orapa: Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin. Geochim Cosmochim Acta 213:574–592. https://doi.org/10.1016/j.gca.2017.06.038

    Article  Google Scholar 

  • Aulbach S, Woodland AB, Vasilyev P, Galvez ME, Viljoen KS (2017b) Effects of low-pressure igneous processes and subduction on Fe3+/ΣFe and redox state of mantle eclogites from Lace (Kaapvaal craton). Earth Planet Sci Letters 474:283–295. https://doi.org/10.1016/j.epsl.2017.06.030

    Article  Google Scholar 

  • Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley J, Haggerty SE (2001) Geochemistry of xenolithic eclogites from West Africa, Part I: a link between low MgO eclogites and Archean crust formation. Geochim Cosmochim Acta 65:1499–1527. https://doi.org/10.1016/S0016-7037(00)00626-8

    Article  Google Scholar 

  • Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2002) Geochemistry of xenolithic eclogites from West Africa, part 2: Origins of the high MgO eclogites. Geochim Cosmochim Acta 66:4325–4345. https://doi.org/10.1016/S0016-7037(02)01004-9

    Article  Google Scholar 

  • Beard BL, Fraracci KN, Taylor LA, Snyder GA, Clayton RN, Mayeda TK, Sobolev NV (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Miner Petrol 125:293–310. https://doi.org/10.1007/s004100050

    Article  Google Scholar 

  • Bickle MJ (1986) Implications of melting for stabilisation of the lithosphere and heat loss in the Archaean. Earth Planet Sci Lett 80:314–324. https://doi.org/10.1016/0012-821X(86)90113-5

    Article  Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal. Analysis Rev Mineral Geochem 69:445–478

    Article  Google Scholar 

  • Bindeman IN et al (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235:480–496. https://doi.org/10.1016/j.epsl.2005.04.014

    Article  Google Scholar 

  • Bowers TS, Taylor HP Jr (1985) An integrated chemical and stable-isotope model of the origin of Midocean Ridge hot spring systems. J Geophys Res Solid Earth 90:12583–12606. https://doi.org/10.1029/JB090iB14p12583

    Article  Google Scholar 

  • Burdett JW, Grotzinger JP, Arthur MA (1990) Did major changes in the stable-isotope composition of Proterozoic seawater occur? Geology 18:227–230 https://doi.org/10.1130/0091-7613(1990)018%3C0227:DMCITS%3E2.3.CO;2

    Article  Google Scholar 

  • Byerly BL, Kareem K, Bao H, Byerly GR (2017) Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archean komatiites Nat Geosci 1–5

  • Caporuscio FA (1990) Oxygen isotope systematics of eclogite mineral phases from South Africa. Lithos 203–210

  • Caporuscio FA, Smyth JR (1990) Trace elements crystal chemistry of mantle eclogites. Contrib Miner Petrol 105:550–561. https://doi.org/10.1007/BF00302494

    Article  Google Scholar 

  • Clark JR, Papike JJ (1968) Crustal-chemical characterization of omphacites. Am Miner 53:840–868

    Google Scholar 

  • Condie KC (2013) Evolution of Archean crust and early life vol 7. Modern approaches in solid earth sciences. Springer

  • Czas J (2018) The quandary of the Sask Craton: origin and evolution of the lithospheric mantle beneath the Sask Craton. University of Alberta

  • De Wit MJ, Hart R, Martin A, Abbott P (1982) Archean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies. Econ Geol 77:1783–1802. https://doi.org/10.2113/gsecongeo.77.8.1783

    Article  Google Scholar 

  • de Wit MJ et al (1992) Formation of an Archean continent. Nature 357:553–562

    Article  Google Scholar 

  • Deines P, Harris JW, Robinson DN, Gurney JJ, Shee SR (1991) Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen content of their diamonds. Geochim Cosmochim Acta 55:515–524. https://doi.org/10.1016/0016-7037(91)90009-T

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Miner Geochem 43:319–364

    Article  Google Scholar 

  • Faure K, Harris C (1991) Oxygen and carbon isotope geochemistry of the 3.2 Ga Kaap Valley tonalite, Barberton greenstone belt, South Africa. Precambrian Res 301–319

  • Field M, Stiefenhofer J, Robey J, Kurszlaukis S (2008) Kimberlite-hosted diamond deposits of southern Africa: a review. Ore Geol Rev 33–75

  • Garber JM et al (2018) Multidisciplinary constraints on the abundance of diamond and eclogite in the cratonic lithosphere. Geochem Geophys Geosyst 19:2062–2086. https://doi.org/10.1029/2018GC007534

    Article  Google Scholar 

  • Garlick GD, MacGregor ID, Vogel DE (1971) Oxygen isotope ratios in eclogites from kimberlites. Science 172:1025–1027

    Article  Google Scholar 

  • Gonzaga RG, Menzies MA, Thirlwall MF, Jacob DE, Leroex A (2010) Eclogites and garnet pyroxenites: problems resolving provenance using Lu-Hf, Sm-Nd and Rb-Sr isotope systems. J Petrol 51:513–535. https://doi.org/10.1093/petrology/egp091

    Article  Google Scholar 

  • Gréau Y, Huang J-X, Griffin WL, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim Cosmochim Acta 75:6927–6954. https://doi.org/10.1016/j.gca.2011.08.035

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: evidence from d18O buffering in the oceans by deep (> 5 km) seawater–hydrothermal circulation at mid-ocean ridges. J Geophys Res Solid Earth 86:2737–2755. https://doi.org/10.1029/JB086iB04p02737

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY (2007) Cratonic lithospheric mantle: Is there anything subducted? Episodes 30:43–53

    Google Scholar 

  • Griffin W, O’Reilly SY, Natapov LM, Ryan CG (2003) The evolution of the lithospheric mantle beneath the Kalahari craton and its margins. Lithos 71:215–241

    Article  Google Scholar 

  • Haggerty SE, Sautter V (1990) Ultradeep (Greater than 300 kilometers). Ultramafic upper mantle xenoliths. Science 248:993–996

    Article  Google Scholar 

  • Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the peninsula granite, cape granite suite, South Africa: constraints on melting and emplacement mechanisms South African. J Geol 113:385–396

    Google Scholar 

  • Harte B, Gurney J (1975) Evolution of clinopyroxene and garnet in an eclogite nodule from the Roberts Victor kimberlite pipe, S Afr Phys Chem Earth:367–387

  • Harte B, Kirkley MB (1997) Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chem Geol 136:1–24. https://doi.org/10.1016/S0009-2541(96)00127-1

    Article  Google Scholar 

  • Hatton CJ (1978) The geochemistry and origin of xenoliths from the Roberts Victor mine. University of Cape Town, CT

    Google Scholar 

  • Hatton CJ, Gurney J (1977) Igneous fractionation trends in Roberts-Victor eclogites. Paper presented at the 2nd International Kimberlite Conference

  • Helmstaedt H, Doig R (1975) Eclogite nodules from kimberlite pipes of the Colorado plateau—samples of subducted francinsca-type oceanic lithosphere. Phys Chem Earth 9:95–112

    Article  Google Scholar 

  • Herzberg C (2011) Basalts as temperature probes of Earth’s mantle. Geology 39:1179–1180. https://doi.org/10.1130/focus122011.1

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (1998) Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth Sci Rev 44:39–79. https://doi.org/10.1016/S0012-8252(98)00021-X

    Article  Google Scholar 

  • Howarth GH et al (2014) Superplume metasomatism: Evidence from Siberian matle xenoliths Lithos:209–224

  • Hren MT, Tice MM, Chamberlain CP (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion. years ago Nature 462:205. https://doi.org/10.1038/nature08518

    Article  Google Scholar 

  • Huang J-X, Gréau Y, Griffin WL, O’Reilly SY, Pearson NJ (2012) Multi-stage origin of Roberts Victor eclogites: progressive metasomatism and its isotopic effects. Lithos 161–181

  • Huang J-X, Griffin WL, Gréau Y, Pearson NJ, O’Reilly SY, Cliff J, Martin L (2014) Unmasking xenolithic eclogites: progressive metasomatism of a key Roberts Victor sample. Chem Geol 364:56–65. https://doi.org/10.1016/j.chemgeo.2013.11.025

    Article  Google Scholar 

  • Huang J-X et al (2016) Magnesium and oxygen isotopes in Roberts Victor eclogites. Chem Geol 438:73–83. https://doi.org/10.1016/j.chemgeo.2016.05.030

    Article  Google Scholar 

  • Ionov DA, Harmon RS, France-Lanord C, Greenwood PB, Ashchepkovm IV (1994) Oxygen isotope composition of garnet and spinel peridotites in the continental mantle: evidence from the Vitim xenoltih suite, southern Siberia. Geochim Cosmochim Acta 58:1463–1470. https://doi.org/10.1016/0016-7037(94)90549-5

    Article  Google Scholar 

  • Ireland TR, Rudnick RL, Spetsius ZV (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean granites Earth Planet Sci Lett 128 https://doi.org/10.1016/0012-821X(94)90145-7

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 295–316

  • Jacob DE, Foley SF (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 317–336

  • Jacob DE, Jagoutz E, Lowry D, Mattey D, Kudrjavttseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207. https://doi.org/10.1016/0016-7037(94)90304-2

    Article  Google Scholar 

  • Jacob DE, Schmickler B, Schulze DJ (2003) Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos 337–351

  • Jacob DE, Bizimis M, Salters VJM (2005) Lu-Hf and geochemical systematics of recycled ancient oceanic crust: evidence from Roberts Victor eclogites. Contrib Miner Petrol 148:707–720. https://doi.org/10.1007/s00410-004-0631-x

    Article  Google Scholar 

  • Jaffres BDJ, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle mode for the past 3.4 billion years. Earth Sci Rev 83:83–122. https://doi.org/10.1016/j.earscirev.2007.04.002

    Article  Google Scholar 

  • Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wänke H (1984) Anorthositic oceanic crust in the Archean. Earth Lunar Planet Sci 15:395–396

    Google Scholar 

  • James DE, Niu F, Rokosky J (2003) Crustal structure of the Kaapvaal craton and its significance for early crustal evolution. Lithos 413–429

  • Kastings FJ, Tazewell Howard M, Wallmann K, Veizer J, Shields G, Jaffres J (2006) Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet Sci Lett 252:82–93. https://doi.org/10.1016/j.epsl.2006.09.029

    Article  Google Scholar 

  • Katayama I, Suyama Y, Ando J, Komiya T (2009) Mineral chemistry and P-T condition of granular and sheared peridotite xenoliths from Kimberley, South Africa: Origin of the textural variation in the cratonic mantle. Lithos 109(3–4):333–340

    Article  Google Scholar 

  • King EM, Valley JW, Davis DW (2000) Oxygen isotope evolution of volcanic rocks at the Sturgeon Lake volcanic complex, Ontario. Can J Earth Sci 37:39–50. https://doi.org/10.1139/e99-106

    Article  Google Scholar 

  • Knauth LP, Lowe DR (1978) Oxygen isotope geochemistry of cherts from the Onverwacht group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth Planet Sci Lett 41:209–222. https://doi.org/10.1016/0012-821X(78)90011-0

    Article  Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580 https://doi.org/10.1130/0016-7606(2003)115%3C0566:HACTIF%3E2.0.CO;2

    Article  Google Scholar 

  • Korolev NM, Melnik AE, Li X-H, Skublov SG (2018) The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution: a review. Earth Sci Rev 185:288–300. https://doi.org/10.1016/j.earscirev.2018.06.007

    Article  Google Scholar 

  • Krogh E (1988) The garnet-clinopyroxene Fe–Mg geothermometer—a reinterpretation of existing experimental data. Contrib Miner Petrol 99:44–48. https://doi.org/10.1007/BF00399364

    Article  Google Scholar 

  • Lappin MA (1978) The evolution of a grospydite from the Roberts Victor Mine, South Africa. Contrib Miner Petrol 66:229–241. https://doi.org/10.1007/BF00373407

    Article  Google Scholar 

  • Lappin MA, Dawson JB (1975) Two Roberts Victor cumulate eclogites and their re-equilibration. Phys Chem Earth 9:351–365

    Article  Google Scholar 

  • Li W-Y, Xiao F-ZT, Huang Y J (2011) High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen China. Earth Planet Sci Lett 304:224–230. https://doi.org/10.1016/j.epsl.2011.01.035

    Article  Google Scholar 

  • MacGregor ID, Carter JL (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys Earth Planet Interiors 391–397

  • MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91:14063–14079

    Article  Google Scholar 

  • Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotites. Earth Planet Sci Lett 128:231–241. https://doi.org/10.1016/0012-821X(94)90147-3

    Article  Google Scholar 

  • McCandless T, Gurney J (1989) Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlite and related rocks. Special publication—Geological Society of Australia, Perth

    Google Scholar 

  • McCulloch MT, Gregory RT, Wasserburg GJ, Taylor HP (1981) Sm-Nd, Rb-Sr and 18O/16O isotopic systematics in an oceanic crustal section: evidence from the samail ophiolite. J Geophys Res 86:2721–2735

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the. Earth Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The Volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679. https://doi.org/10.1093/petrology/29.3.625

    Article  Google Scholar 

  • Misra KC, Anand M, Taylor LA, Sobolev NV (2004) Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib Miner Petrol 146:696–714. https://doi.org/10.1007/s00410-003-0529-z

    Article  Google Scholar 

  • Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal At Spectrom 24:209–214. https://doi.org/10.1039/B805995K

    Article  Google Scholar 

  • Neal CR et al (1990) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part 2: Sr, Nr and O istope geochemistry. Earth Planet Sci Lett 99:362–379

    Article  Google Scholar 

  • O’Hara MJ, Yoder JHS (1967) Formation and fractionation of basic magmas at high pressures. Scott J Geol 67–117

  • Ongley JS, Basu AR, Kyser KT (1987) Oxygen isotopes in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor eclogites: implications for petrogenesis and mantle metasomatism. Earth Planet Sci Lett 83:80–84. https://doi.org/10.1016/0012-821X(87)90052-5

    Article  Google Scholar 

  • Pearson DG (1999) The age of continental roots Lithos 48:171–194 https://doi.org/10.1016/S0024-4937(99)00026-2

  • Peck WH, Valley JW, Graham CM (2003) Slow oxygen diffusion rates in igneous zircons from metamorphic rocks. Am Miner 88:1003–1014. https://doi.org/10.2138/am-2003-0708

    Article  Google Scholar 

  • Perry ECJ, Ahmad SN (1983) Oxygen isotope geochemistry of Proterozoic chemical sediments. Geol Soc Am Memoir 161:253–264. https://doi.org/10.1130/MEM161-p253

    Article  Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variations of the heat flow, geotherms, and lithospheric thickness. Tectonophysics 279–296

  • Pyle JM, Haggerty SE (1998) Eclogites and the metasomatism of eclogites from the Jagersfontein Kimberlite: punctuated transport and implications for alkali magmatism. Geochim Cosmochim Acta 62:1207–1231. https://doi.org/10.1016/S0016-7037(98)00040-4

    Article  Google Scholar 

  • Radu IB, Moine BN, Ionov DA, Korsakov A, Golovin AV, Mikhailenko D, Cottin J-Y (2017) Kyanite-bearing eclogite xenoliths from Udachnaya kimberlite, Siberian craton, Russia. Bull Soc Géol France 188:75–84. https://doi.org/10.1051/bsgf/2017008

    Article  Google Scholar 

  • Riches AJV et al (2016a) In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal craton. Geochim Cosmochim Acta 174:345–359

    Article  Google Scholar 

  • Riches AJV et al (2016b) In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal craton. Geochim Cosmochim Acta 174:345–359. https://doi.org/10.1016/j.gca.2015.11.028

    Article  Google Scholar 

  • Rollinson H (1997) Eclogite xenoliths in west African kimberlites as residues from Archean granitoid crust formation. Lett Nat 389:173–176

    Article  Google Scholar 

  • Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 173–207

  • Schmitz MD, Bowring SA (2003) Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal Craton, southern Africa. Geol Soc Am Bull 115:533–548 https://doi.org/10.1130/0016-7606(2003)115%3C0533:UMITLC%3E2.0.CO;2

    Article  Google Scholar 

  • Schroeder-Frerkes F, Woodland AB, Uenver-Thiele L, Klimm K, Knapp N (2016) Ca–Eskola incorporation in clinopyroxene: limitations and petrological implications for eclogites and related rocks. Contrib Miner Petrol. https://doi.org/10.1007/s00410-016-1311-3

    Article  Google Scholar 

  • Schulze DJ, Helmstaedt H (1988) Coesite-Sanidine eclogites from kimberlite: products of mantle fractionation or subduction? J Geol 96:435–443. https://doi.org/10.1086/629238

    Article  Google Scholar 

  • Schulze DJ, Valley J, Spicuzza MJ (2000) Coesite-sanidine eclogites from the Roberts Victor kimberlite, South Africa. Lithos 23–32

  • Schulze DJ, Harte B, staff EIMF, Zeb Page, Valley F, Channer JW, Jaques DMD AL (2013) Anticorrelation between low d13C of eclogitic diamonds and high d18O of their coesite and garnet inclusions requires a subduction origin. Geology 41:455–458. https://doi.org/10.1130/G33839.1

    Article  Google Scholar 

  • Shatsky VS, Zedgenizov DA, Ragozin AL (2016) Evidence for a subduction component in the diamond-bearing mantle of the Siberian craton. Russian Geol Geophys 57(1):111–126

    Article  Google Scholar 

  • Shchipansky AA (2012) Subduction geodynamics in Archean and formation of diamond-bearing lithospheric keels and early continental crust of cratons. Geotectonics 46:122–141. https://doi.org/10.1134/S0016852112020057

    Article  Google Scholar 

  • Shervais JW, Taylor LA, Lugmair GW, Clayton RN, Mayeda TK, Korotev RL (1988) Early Proterozoic oceanic crust and the evolution of subcontinental mantle: eclogites and related rocks from southern Africa. Bull Geol Soc Am 100:411–423 https://doi.org/10.1130/0016-7606(1988)100%3C0411:EPOCAT%3E2.3.CO;2

    Article  Google Scholar 

  • Shu Q, Brey GP, Hoefer HE, Zhao Z, Pearson DG (2016) Kyanite/corundum eclogites from the Kaapvaal Craton: subducted troctolites and layered gabbros from the Mid- to Early Archean. Contrib Miner Petrol. https://doi.org/10.1007/s00410-015-1225-5

    Article  Google Scholar 

  • Smith CB, Allsop HL, Kramers JD, Roddick JC (1985) Emplacement ages of Jurassic-Cretaceous South African kimberlites by the Rb–Sr method on phlogopite and whole-rock samples. Trans Geol Soc S Afr 88:249–266

    Google Scholar 

  • Smithies RH, Champion D, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambrian Res 89–101

  • Smyth JR, Caporuscio FA (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan kimberlite: II. Primary phase compositions and origin. In: Kornprobst J (ed) Kimberlites II: the mantle and crust–mantle relationship. Elsevier, Amsterdam, pp 121–131

    Chapter  Google Scholar 

  • Smyth JR, Caporuscio FA, McCormick TC (1989) Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet Sci Lett 93:133–141. https://doi.org/10.1016/0012-821X(89)90191-X

    Article  Google Scholar 

  • Snyder GA, Jerde EA, Taylor LA, Halliday AN, Sobolev VN, Sobolev NV (1993) Nd and Sr isotopes from diamondiferous eclogites, Udachnaya Kimberlite Pipe, Yakutia, Siberia: evidence of differentiation in the early Earth? Earth Planet Sci Lett 118:91–100. https://doi.org/10.1016/0012-821X(93)90161-2

    Article  Google Scholar 

  • Sommer H, Jacob DE, Stern RA, Petts D, Mattey D, Pearson DG (2017) Fluid-induced transition from banded kyanite- to bimineralic eclogite and implications for the evolution of cratons. Geochim Cosmochim Acta 207:19–42. https://doi.org/10.1016/j.gca.2017.03.017

    Article  Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: Mineralogy, Petrography and whole rock chemistry J Geol:551–567

  • Van der Meer QHA, Klaver M, Waight TE, Davies GR (2013) The provenance of sub-cratonic mantle beneath the Limpopo Mobile Belt (South Africa). Lithos 170–171:90–104

    Article  Google Scholar 

  • van Reenen DD, Roering C, Ashwal LD, de Wit MJ (1992) Regional geological setting of the Limpopo Belt. Precambrian Res 55:1–5

    Article  Google Scholar 

  • van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA–ICP–MS. In Laser ablation-ICPMS in the earth science. In: Sylvester P (ed) Mineralogical association of Canada, vol 29. pp 239–243

  • Veizer J, Prokoph A (2015) Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth Sci Rev 146:92–104. https://doi.org/10.1016/j.earscirev.2015.03.008

    Article  Google Scholar 

  • Veizer J et al (1999) 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Viljoen KS, Schulze DJ, Quadling AG (2005) Contrasting Group I and Group II Eclogite Xenolith Petrogenesis: petrological, trace element and isotopic evidence from eclogite, garnet-websterite and alkremite xenoliths in the kaalvallei kimberlite, South Africa. J Petrol 46:2059–2090

    Article  Google Scholar 

  • Vogel DE, Garlick GD (1970) Oxygen-isotope ratios in metamorphic eclogites. Contrib Miner Petrol 28:183–191. https://doi.org/10.1007/BF00405748

    Article  Google Scholar 

  • Walker JCG, Lohmann KC (1989) Why the oxygen isotopic composition of sea water changes with time. Geophys Res Lett 16:323–326. https://doi.org/10.1029/GL016i004p00323

    Article  Google Scholar 

  • Wang S-J, Teng F-Z, Williams HM, Li S-G (2012) Magnesium isotopic variations in cratonic eclogites: origin and implications. Earth Planet Sci Lett 359–360:219–226. https://doi.org/10.1016/j.epsl.2012.10.016

    Article  Google Scholar 

  • Wang S-J, Fang-Zheng T, Li S-G, Hong J-A (2014) Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta 143:34–48. https://doi.org/10.1016/j.gca.2014.03.029

    Article  Google Scholar 

  • Wang S-J, Teng F-Z, Rudnick RL, Li S-G (2015) Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology 43:1071–1074. https://doi.org/10.1130/G37259.1

    Article  Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, superior province, canada: implications for late Archean tectonomagmatic processes. J Petrol 43:1551–1570

    Article  Google Scholar 

  • Withers AC, Wood BJ, Carroll MR (1998) The OH content of pyrope at high pressure. Chem Geol 147:161–171. https://doi.org/10.1016/S0009-2541(97)00179-4

    Article  Google Scholar 

  • Zhang S-B, Zheng Y-F, Zhao Z-F, Wu Y-B, Yuan H, Wu F-Y (2009) Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China. Lithos 113:347–368. https://www.nature.com/articles/nature08518#supplementary-information

Download references

Acknowledgements

We are grateful to J.L. Devidal for his assistance with the electron microprobe and LA-ICP-MS analyses and to Sherissa Roopnarain for the mass spectrometer analyses. D. Jacob, F. Viljoen and M. Grégoire are gratefully acknowledged for improving an earlier version of this manuscript as part of IBR’s PhD thesis. We are equally grateful for the opportunity to use the JXA8230 EPMA at Rhodes University. The financial support from Jean Monnet University of Saint Etienne, through doctoral scholarship and international travel grants and from the National Research Foundation (South Africa) are hereby acknowledged. This research has been equally made possible through the financial support from the French Government Laboratory of Excellence initiative n° ANR-10-LABX-0006, the Region Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution number 334. We are thankful to Sonja Aulbach and Dorrit Jacob for their constructive comments that helped to considerably improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana-Bogdana Radu.

Additional information

Communicated by Jochen Hoefs.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 75 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radu, IB., Harris, C., Moine, B.N. et al. Subduction relics in the subcontinental lithospheric mantle evidence from variation in the δ18O value of eclogite xenoliths from the Kaapvaal craton. Contrib Mineral Petrol 174, 19 (2019). https://doi.org/10.1007/s00410-019-1552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1552-z

Keywords

Navigation