Skip to main content

Advertisement

Log in

Lu–Hf and geochemical systematics of recycled ancient oceanic crust: evidence from Roberts Victor eclogites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Eclogites from the Roberts Victor mine, Kaapvaal craton are classic examples of subducted Achaean oceanic crust brought up as xenoliths by kimberlite. New in situ trace element and oxygen isotope data (δ18O=3.09–6.99‰ SMOW) presented here reemphasise their origin from seawater-altered plagioclase-rich precursors. Their Hf–Nd isotopic compositions are not in agreement with compositions predicted by geochemical modelling of the isotopic composition of aged subducted oceanic crust. Instead, Hf isotopic compositions are very heterogeneous, varying between 0.281625 and 0.355077 (−37.8 and +2561 ɛHf) at the time of kimberlite emplacement (128 Ma) in keeping with equally variable Nd isotopic compositions (0.511124–0.545092; −26.3 to +636 ɛNd). However, most samples plot on the terrestrial array. The isotopic compositions of some samples are too extreme to play a major role in mixed peridotite-eclogite melting in basalt source regions, whereas the isotopic composition of other samples is reconcilable with a contribution of up to ca. 15% of eclogite partial melt to the MORB source. Most importantly, our results show that ancient subducted oceanic crust is not isotopically homogeneous and should not be treated as a “component” or “reservoir” during geochemical modelling. The heterogeneity reflects radiogenic in-growth starting from small compositional heterogeneities in gabbroic protoliths, followed by modification during sea-floor alteration, subduction and emplacement into the subcratonic lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions. AGU, Washington, pp 85–114

    Google Scholar 

  • Bach W, Alt JC, Niu Y, Humphris S, Erzinger J, Dick HJB (2001) The geochemical consequences of late-stage low-grade alteration of lower oceanic crust at the SW Indian ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65(19):3267–3288

    Article  CAS  Google Scholar 

  • Barth M, Rudnick RL, Horn I, McDonough WF, Spicuzza M, Valley JW, Haggerty SE (2001) Geochemistry of xenolithic eclogites from West Africa, part I: a link between low MgO eclogites and Archean crust formation. Geochim Cosmochim Acta 65:1499–1527

    Article  CAS  Google Scholar 

  • Barth M, Rudnick RL, Horn I, McDonough WF, Spicuzza M, Valley JW, Haggerty SE (2002) Geochemistry of xenolithic eclogites from West Africa, part II: origins of the high MgO eclogites. Geochim Cosmochim Acta 66:4325–4345

    Article  CAS  Google Scholar 

  • Berg GW (1968) Secondary alteration in eclogites from kimberlite pipes. Am Mineralogist 53(7–8):1336–1346

    CAS  Google Scholar 

  • Bizimis M (2001) Geochemical processes in the upper mantle: evidence from peridotites, kimberlites and carbonatites. PhD Thesis, Florida State University, 281 pp

    Google Scholar 

  • Bizimis M, Salters VJM, Dawson JB (2003) The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contrib Miner Petrol 145:281–300

    Article  CAS  Google Scholar 

  • Bizimis M, Sen G, Salters VJM (2004) Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet Sci Lett 217:43–58

    Article  CAS  Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson RK, David J (2002) Hf isotope evidence for a hidden mantle reservoir. Geology 30:771–774

    Article  CAS  Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  CAS  Google Scholar 

  • Clayton RN, Goldsmith JR, Karel VJ, Mayeda TK, Newton RC (1975) Limits on the effect of pressure on isotopic fractionation. Geochim Cosmochim Acta 39:1197–1201

    Article  Google Scholar 

  • Dawson JB (1984) Contrasting types of upper-mantle metasomatism? In: Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships, vol 2. Elsevier, Amsterdam, pp 289–294

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Miner Petrol 40:259–274

    CAS  Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Miner Petrol 71:13–22

    Article  CAS  Google Scholar 

  • Fett A (1995) Elementverteilung zwischen Granat, Klinopyroxen und Rutil in Eklogiten—Experiment und Natur. PhD Thesis, Johannes Gutenberg Universität, Mainz

  • Foley SF, Barth M, Jenner GA (2000) Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta 64:933–938

    Article  CAS  Google Scholar 

  • Green DH, Sobolev NV (1975) Coexisting garnets and ilmenites synthesized at high pressures from pyrolite and olivine basanite and their significance for kimberlitic assemblages. Contrib Miner Petrol 50:217–229

    Article  CAS  Google Scholar 

  • Günther D, Longerich HP, Jackson SE (1996) A new enhanced sensitivity quadruple inductively coupled plasma-mass spectrometer (ICPMS). Can J Appl Spectrosc 40:111–116

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 elements. Contrib Miner Petrol 113:1–18

    Article  CAS  Google Scholar 

  • Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta 63:4059–4080

    Article  CAS  Google Scholar 

  • Harte B, Kirkley MB (1997) Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chem Geology 136:1–24

    Article  CAS  Google Scholar 

  • Hatton CJ (1978) The geochemistry and origin of xenoliths from the Roberts Victor mine. PhD Thesis, University of Cape Town

  • Hatton CJ, Gurney JJ (1979) A diamond graphite eclogite from the Roberts Victor mine. In: Proceedings of 2nd international kimberlite conference 2:29–36

  • Hirschmann M, Stolper E (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124:185–208

    Article  CAS  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  CAS  Google Scholar 

  • Irving AJ (1974) Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipe, Australia. J Petrol 15:1–40

    CAS  Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316

    Article  CAS  Google Scholar 

  • Jacob DE, Foley SF (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48:317–336

    Article  CAS  Google Scholar 

  • Jacob D, Jagoutz E (1995) A diamond-graphite bearing eclogitic xenolith from Roberts Victor (South Africa): indications for petrogenesis from Pb-, Nd- and Sr- isotopes. In: Meyer HOA, Leonardos OH (eds) Kimberlites, related rocks and mantle xenoliths, vol 1. CPRM Spec Publ, Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, Brazil pp 304–317

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207

    Article  CAS  Google Scholar 

  • Jacob DE, Schmickler B, Schulze DJ (2003) Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos 71:337–351

    Article  CAS  Google Scholar 

  • Jagoutz E (1988) Nd and Sr systematics in an eclogite xenolith from Tanzania: evidence for frozen mineral equilibria in the continental lithosphere. Geochim Cosmochim Acta 52:1285–1293

    Article  CAS  Google Scholar 

  • Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wänke H (1984) Anorthositic oceanic crust in the Archean Earth. In: 15th lunar and planetary science conference, pp 395–396(abs)

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Miner Petrol 133:60–68

    Article  CAS  Google Scholar 

  • Kennedy AK, Lofgren GE, Wasserburg GJ (1993) An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet Sci Lett 115:177–195

    Article  CAS  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66:3109–3123

    Article  CAS  Google Scholar 

  • Kogiso T, Hirschmann M, Frost D (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216:603–617

    Article  CAS  Google Scholar 

  • Konzett J (1997) Phase relations and chemistry of Ti-rich K-richterite-bearing mantle assemblages: an experimental study to 8.0 GPa in a Ti-KNCMASH system. Contrib Miner Petrol 128:385–404

    Article  CAS  Google Scholar 

  • Kornprobst J (1970) Les péridotites et les pyroxénites du massif ultrabasic de Beni Bouchera: une étude expérimentale entre 1100 et 1550°C sous 15 à 30 kilobars de pression sèche. Contrib Miner Petrol 29:290–309

    Article  CAS  Google Scholar 

  • Kramers JD (1979) Lead, uranium, strontium, potassium and rubidium in inclusion-bearing diamonds and mantle-derived xenoliths from Southern Africa. Earth Planet Sci Lett 42:58–70

    Article  CAS  Google Scholar 

  • Lassiter JC, Hauri EH (1998) Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett 164(3–4):483–496

    Article  CAS  Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectr 11:899–904

    Article  CAS  Google Scholar 

  • MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91(B14):14063–14079

    CAS  Google Scholar 

  • Mattey D, Lowry D, MacPherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241

    Google Scholar 

  • McCandless TE, Gurney JJ (1989) Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks, vol 2. GSA Special Publication No. 14, Perth, pp 827–832

  • McCormick TC, Smyth JR and Caporuscio FA (1994) Chemical systematics of secondary phases in mantle eclogites. In: Meyer HOA, Leonardos OH (eds) Kimberlites, related rocks and mantle xenoliths. CPRM— Special Publication. Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, Brazil, pp 405–419

  • Munker C, Weyer S, Scherer E, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC–ICPMS measurements. Geochem Geophys Geosyst 2, paper number 2001GC000183

  • Neal CR, Taylor LA, Davidson JP, Holden P, Halliday AN, Nixon PH, Paces JB, Clayton RN, Mayeda TK (1990) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part 2: Sr, Nd, and O isotope geochemistry. Earth Planet Sci Lett 99:362–379

    Article  CAS  Google Scholar 

  • Niu Y, Batiza R (1997) Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet Sci Lett 148:471–483

    Article  CAS  Google Scholar 

  • Nowell GM, Kempton PD, Pearson DG (1998) Hf-Nd isotope systematics of kimberlites: relevance to terrestrial Hf-Nd systematics. Ext Abs 7th Int Kimberlite Conf, pp 628–630

  • Nowell GM, Pearson DG, Jacob DE, Spetsius ZV, Nixon PH, Haggerty SE (2003) The origin of alkremites and related rocks: a Lu–Hf, Rb–Sr and Sm–Nd isotope study. In: extended abstracts 8th international kimberlite conference, unpaginated

  • Ongley JS, Basu AR, Kyser TK (1987) Oxygen isotopes in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor eclogites: implications for petrogenesis and mantle metasomatism. Earth Planet Sci Lett 83:80–84

    Article  CAS  Google Scholar 

  • Pearson DG, Nowell GM (2004) Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: implications for mixed peridotite–pyroxenite mantle sources. J Petrol 45(2):439–455

    Article  CAS  Google Scholar 

  • Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re–Os, Sm–Nd, and Rb–Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta 59:959–978

    CAS  Google Scholar 

  • Pertermann M, Hirschmann M (2003a) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44(12):2173–2201

    Article  CAS  Google Scholar 

  • Pertermann M, Hirschmann M (2003b) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions form solidus location and melting rate. J Geophys Res 108. Doi 10.1029/1200JB000118

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar. Implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    CAS  Google Scholar 

  • Richardson SH, Erlank AJ, Hart SR (1985) Kimberlite-borne garnet peridotite xenoliths from old enriched subcontinental lithosphere. Earth Planet Sci Lett 75:116–128

    Article  CAS  Google Scholar 

  • Rudnick RL (1995) Eclogite xenoliths: samples of Archean ocean floor. In: extended abstracts 6th international kimberlite conference, pp 473–475

  • Salters VJM (1994) 176Hf/177Hf determination in small samples by a high-temperature SIMS technique. Anal Chem 33:4186–4189

    Google Scholar 

  • Salters VJM, Dick HJB (2002) Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418:68–72

    Article  CAS  PubMed  Google Scholar 

  • Salters VJM, Hart SR (1989) The Hf paradox and the role of garnet in the source of mid-ocean-ridge basalts. Nature 342:420–422

    Article  CAS  Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem Geol 145(3–4):447–460

    Article  CAS  Google Scholar 

  • Salters VJM, Longhi JE, Bizimis M (2002) Near mantle solidus trace element partitioning at pressures up to 3.5 GPa. Geochem Geophys Geosyst 3(7):10.1029/2001GC000148

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the Lu–Hf clock. Science 293:683–687

    CAS  PubMed  Google Scholar 

  • Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:175–207

    Article  Google Scholar 

  • Shirey SB, Carlson RW, Richardson SH, Menzies A, Gurney JJ, Pearson DG, Harris JW, Wiechert U (2001) Archean emplacement of eclogitic components into the lithospheric mantle during formation of the Kaapvaal craton. Geophys Res Lett 28(13):2509–2512

    Article  CAS  Google Scholar 

  • Smith CB, Allsopp HL, Kramers JD, Hutchinson G, Roddick JC (1985) Emplacement ages of Jurassic–Cretaceous South African kimberlites by the Rb–Sr method on phlogopite and whole-rock samples. Trans Geol Soc S Afr 88(2):249–266

    Google Scholar 

  • Smith CB, Gurney JJ, Harris JW, Robinson DN, Shee SR, Jagoutz E (1989) Sr and Nd isotopic systematics of diamond-bearing eclogitic xenoliths and eclogite inclusions in diamond from southern Africa. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks, vol 2. GSA Special Publication No. 14, Perth, pp 853–863

  • Stracke A, Salters VJM, Sims KWW (1999) Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium–neodymium–thorium isotope systematics. Geochem Geophys Geosyst 1:paper number 1999GC000013

    Article  Google Scholar 

  • Stracke A, Zindler A, Salters VJM, McKenzie D, Blichert-Toft J, Albarede F, Gronvold K (2003) Theistareykir revisited. Geochem Geophys Geosyst 4:Article No. 8507

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geol Soc Spec Publ, pp 313–345

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I: mineralogy, petrography and whole rock chemistry. J Geol 97(5):551–567

    Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarede F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168(1–2):79–99

    Article  CAS  Google Scholar 

  • Yasuda A, Fujii T, Kurita K (1994) Melting phase-relations of an anhydrous midocean ridge basalt from 3 to 20 GPa—Implications for the behavior of subducted oceanic crust in the mantle. J Geophys Res 99(B5):9401–9414

    Article  Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt 78:243–255

    CAS  Google Scholar 

  • Zimmer M, Kröner A, Jochum KP, Reischmann T, Todt W (1995) The Gabal Gerf complex: a Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem Geol 123:29–51

    Article  CAS  Google Scholar 

  • Zindler A, Jagoutz E (1988) Mantle cryptology. Geochim Cosmochim Acta 52:319–333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.B. Dawson, E. Jagoutz and G. Brey are thanked for access to their Roberts Victor eclogite samples. We are also grateful to J.J. Gurney and the Kimberlite Research Group at the University of Cape Town for providing a piece of HRV247 for this study. D.J. gratefully acknowledges financial support by the DFG (Forschungsstipendium Ja 781/2). M.B. acknowledges financial support from FIU and NSF Grant OCE-0241681 to G. Sen. Reviews by H. Brueckner and S. Weyer helped to clarify some of the points stressed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Jacob.

Appendix

Appendix

Secondary effects on whole rock Hf and Nd isotopic compositions

To constrain the effects of secondary processes on the whole rock eclogite Hf and Nd isotopic data, Hf and Nd isotopic as well as solution ICP–MS analyses of trace elements were carried out on both leached and unleached eclogite powders. Whole rock powders were leached twice with warm 2.5 N HCl for 30 min, subsequently dissolved in HF/HNO3 and split into two aliquots. One aliquot was analysed for trace element concentrations with a Finnigan Element ICP–MS at NHMFL/FSU (see Bizimis et al. 2003; Stracke et al. 2003 for detailed analytical techniques); the other was submitted to the chemical separation scheme outlined above and measured for Hf and Nd isotopic compositions. Leachates were evaporated, re-dissolved in 2.5 N HCl and measured for their trace element concentrations by solution ICP-MS. The amount of leached material was found to vary between 6.7 and 8.6 wt% and contained 8.8–32.4% of the rock’s Nd and Sm budget (Table 9). Only 3.8–7.4% of the Hf and 4.7–10.2% of the Lu budgets were in the leachates. Consistent with earlier findings (Zindler and Jagoutz 1988; Barth et al. 2001) the leachate is enriched in LILE and LREE, whereas Ti, Zr and Hf are immobile, especially in samples that contain rutile (e.g. sample DEJ5). Unleached bulk rocks have very variable isotopic compositions (grey diamonds, Fig. 6), whereas leached residues (open diamonds) converge towards the field defined by Group II kimberlites (to which the Roberts Victor kimberlite belongs) in both Nd and Hf isotopic composition, but do not agree with the reconstructed bulk compositions (black triangles). This is in agreement with the presence of both leachable and non-leachable foreign components in the eclogite xenoliths, introduced by metasomatizing fluids and deuteric alteration that have also been described from peridotitic xenolith from kimberlites (Richardson et al. 1985). These findings once again highlight the necessity to reconstruct “clean” bulk eclogite compositions based on mineral analyses and modes and that bulk trace element and isotopic analyses have to viewed with great caution.

Table 9 Isotopic composition of unleached (“bulk”) and leached samples (“residue”) compared to recalculated bulk compositions (from Table 6 and Jacob and Jagoutz 1995) and selected trace element compositions (in ppm) of unleached whole rocks (with subscript WR) and leachates (subscript L)
Fig. 6
figure 6

Comparison of isotopic compositions of bulk eclogite samples (grey diamonds) with leached bulks (white diamonds) and reconstructed bulk compositions (black triangles). Acid leaching moves the isotopic compositions towards the composition of the kimberlite (grey bar, Smith et al. 1985). This illustrates that secondary phases are introduced into the xenoliths by infiltration and that especially interaction with the kimberlite magma leads to formation of not leachable minerals (silicates, oxides). This is consistent with findings in the literature that describe secondary phlogopite, amphibole, spinel and pyroxenes in eclogite xenoliths from kimberlites (e.g. McCormick 1994) and with comparable studies on peridotitic xenoliths from kimberlites (Richardson et al. 1985). Reconstructing the bulk via mineral analyses and modal estimations, in contrast, gives a more reliable estimate of the primary composition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, D.E., Bizimis, M. & Salters, V.J.M. Lu–Hf and geochemical systematics of recycled ancient oceanic crust: evidence from Roberts Victor eclogites. Contrib Mineral Petrol 148, 707–720 (2005). https://doi.org/10.1007/s00410-004-0631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0631-x

Keywords

Navigation