Skip to main content
Log in

Phase relations in the partial melting of the Baldissero spinel-lherzolite (Ivrea-Verbano zone, Western Alps, Italy)

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The occurrence of various types of mobilizates in the Baldissero spinel lherzolite is due to partial melting of the same body. The study of the relationships between the peridotite and its mobilizates demonstrates that olivine did not take an active part in the fusion. Estimates of the degree of partial melting vary from 10% for the average composition, to 20% for the most depleted samples. These values refer to an initial pyrolitic composition, and thus are relative, as they can vary depending on the actual primary composition.

The calculated composition of the liquid generated by partial melting is quite similar to that of a picritic basalt, and is practically the same irrespective of the 10% and 20% fusion. This fact provides strong evidence that melting took place at a unique invariant point of the natural system, producing a liquid with a remarkably constant composition.

Projection of the liquid in the fo-an-di-si diagram is fairly well aligned with the modal compositions of the solid residua, but does not coincide with the minimum of the simplified system. The proposed solution is based on the enlargement of the spinel field (at constant pressure), due to the Cr content in this phase. Therefore, the position of the invariant minimum is not fixed, but rather controlled by the Cr content of the spinel. Is is suggested that, by an increase in the Cr content, spinel might at a given moment become refractory. Thus, saturated or over-saturated magmas are produced depending on the phase relations between olivine, orthopyroxene and clinopyroxene. This would happen in the case of very advanced fusions or in the case of fusion of already depleted peridotites.

The relationships between mobilizates of different generations suggest a non adiabatic mantle upwelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berckhemer H (1969) Direct evidence for the composition of the lower crust and Moho. Tectonophysics 8:97–105

    Article  Google Scholar 

  • Bertolani M (1968) Fenomeni di trasformazione granulitica nella formazione basica Ivrea-Verbano (Alpi Occidentali Italiane). Schweiz Mineral Petrogr Mitt 48:21–30

    Google Scholar 

  • Capedri S, Corradini A, Fanucci O, Garuti G, Rivalenti G, Rossi A (1977a) The origin of the Ivrea-Verbano basic formation (Italian Western Alps). Statistical approach to the peridotite problem. Rend Soc Ital Mineral Petr 33:583–592

    Google Scholar 

  • Capedri S, Garuti G, Rivalenti G, Rossi A (1977b) The origin of the Ivrea-Verbano basic formation. Pyroxenitic and gabbroic mobilizates as products of partial melting of mantle peridotite. Neues Jahrb Mineral, Monatsh H4:168–179

    Google Scholar 

  • Cawthorn RG, Collerson KD (1974) The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses. Am Mineral 59:1203–1208

    Google Scholar 

  • Dickey JS Jr, Yoder HS Jr, Schairer JF (1971) Chromium in silicate-oxide systems. Carnegie Inst Washington Yearb 70:118–122

    Google Scholar 

  • Ernst WG (1978) Petrochemical study of Iherzolitic rocks from the Western Alps. J Petrol 19:341–392

    Google Scholar 

  • Etienne F (1971) La lherzolite rubanée de Baldissero Canavese (Piémont, Italie) — essai d'analyse structurale et de pétrogenèse. Thesis, 3rd cycle, Nancy, p 157

  • Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336

    Google Scholar 

  • Fenoglio M (1956) Limiti occidentali della zona Ivrea-Verbano e suoi rapporti con la zona del Canavese. Atti R Accad Sci Torino 90:284–286

    Google Scholar 

  • Garuti G (1977) The origin of the Ivrea-Verbano basic formation (Italian Western Alps). Microstructural data on peridotites from the area of Sesia Valley. Rend Soc Ital Mineral Petr 33:601–616

    Google Scholar 

  • Garuti G, Friolo R (1979) Textural features and olivine fabrics of peridotites from the Ivrea-Verbano zone. Mem Soc Geol Padova 33:111–125

    Google Scholar 

  • Garuti G, Rivalenti G, Rossi A, Sinigoi S (1979) Mineral equilibria as geotectonic indicators in the ultramafics and related rocks of the Ivrea-Verbano basic complex (Italian Western Alps): Pyroxenes and olivine. Mem Soc Geol Padova 33:147–160

    Google Scholar 

  • Giese P (1968) Die Struktur der Erdkruste im Bereich der Ivrea-Zone. Schweiz Mineral Petrogr Mitt 48:261–284

    Google Scholar 

  • Giese P (1979) Crustal structure of the Ivrea zone within the frame of the Alpine crustal structure. Mem Soc Geol Padova 33:51–57

    Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Google Scholar 

  • Herzberg CT (1972) Stability fields of plagioclase- and spinel-lherzolite. In: Progress in Experimental Petrology D 2:145–148

    Google Scholar 

  • Herzberg CT (1978) The bearing of phase equilibria in simple and complex system on the origin and evolution of some well documented garnet-websterites (Preprint)

  • Herzberg CT, Chapman NA (1976) Clinopyroxene geothermometry of spinel lherzolites. Am Mineral 61:626–637

    Google Scholar 

  • Hytönen K, Schairer JF (1960) The system enstatite-diopside-anorthite. Carnegie Inst Washington Yearb 59:71–72

    Google Scholar 

  • Irvine TN (1966) Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Can J Earth Sci 4:71–103

    Google Scholar 

  • Jakobsson SP, Jonsson J, Shido F (1978) Petrology of the western Reykjanes Peninsula, Iceland. J Petrol 19:669–705

    Google Scholar 

  • Keith ML (1954) Phase equilibria in the system MgO-Cr2O3-SiO2. J Am Ceram Soc 37:490

    Google Scholar 

  • Kornprobst J (1970) Les péridotites et les pyroxénolites du massif ultrabasique des Beni Bouchera: une étude expérimentale entre 1,100° et 1,550° C, sous 15 à 30 kilobars de pression sèche. Contrib Mineral Petrol 29:290–309

    Google Scholar 

  • Kushiro I (1969) The system forsterite-diopside-silica with and without water at high pressures. Am J Sci 267A:269–294

    Google Scholar 

  • Kushiro I (1972) Determinations of liquidus relations in synthetic silicate system with electron probe analysis: the system forsterite-diopside-silica at 1 atmosphere. Am Mineral 57:1260–1271

    Google Scholar 

  • Lensch G (1968) Die Ultramafitite der Zone von Ivrea und ihre geologische Interpretation. Schweiz Mineral Petrogr Mitt 48:91–102

    Google Scholar 

  • Lensch G (1971) Die Ultramafitite der Zone von Ivrea. Ann Univ Saraviensis 9:5–146

    Google Scholar 

  • Maaløe S, Printzlau I (1979) Natural partial melting of spinel lherzolite. J Petrol 20:727–741

    Google Scholar 

  • MacGregor D (1967) Mineralogy of model mantle composition. In: Wyllie PJ (ed) Ultramafic and related rocks, pp 382–392

  • Mori T (1977) Geothermometry of spinel lherzolites. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • Mysen BO (1974) The oxygen fugacity \((f_{{\text{O}}_{\text{2}} } )\) as a variable during partial melting of peridotite in the upper mantle. Carnegie Inst Washington Yearb 73:237–240

    Google Scholar 

  • Mysen BO, Kushiro I (1977) Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Am Mineral 62:843–865

    Google Scholar 

  • Nicolas A (1974) Mise en place des péridotites des Lanzo (Alpes Piémontaises); relation avec tectonique et métamorphisme alpins; conséquences géodynamiques. Schweiz Mineral Petrogr Mitt 54:449–460

    Google Scholar 

  • Obata M (1976) The solubility of A12O3 in orthopyroxenes in spinel and plagioclase peridotites and spinel pyroxenite. Am Mineral 61:804–816

    Google Scholar 

  • Osborn EF, Tait DB (1952) The system diopside-forsterite-anorthite. Am J Sci Bowen Vol:413–433

  • Panza GF, Mueller S (1979) The plate boundary between Eurasia and Africa in Alpine Area. Mem Soc Geol Padova 33:44–50

    Google Scholar 

  • Presnall DC, Dixon SA, Dixon JR, O'Donnell TH, Brenner NL, Dycus DW (1978) Liquidus phase relations on the join diopsideforsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib Mineral Petrol 66:203–220

    Google Scholar 

  • Presnall DC, Dixon JR, O'Donnell TH, Dixon SA (1979) Generation of Mid-ocean Ridge Tholeiites. J Petrol 20:3–35

    Google Scholar 

  • Rivalenti G, Garuti G, Rossi A (1975) The origin of the Ivrea-Verbano basic formation (western Italian Alps). Whole rock geochemistry. Boll Soc Geol Ital 94:1149–1186

    Google Scholar 

  • Rivalenti G, Garuti G, Rossi A, Sinigoi S (1979) Spinels as petrogenetic indicators in the Ivrea-Verbano basic complex (Italian Western Alps). Mem Soc Geol Padova 33:161–171

    Google Scholar 

  • Roeder PL, Campbell IH, Jamieson HE (1979) A re-evaluation of the olivine-spinel geothermometer. Contrib Mineral Petrol 68:325–334

    Google Scholar 

  • Shervais J (1979a) Ultramafic and mafic layers in the Alpine-type lherzolite massif at Balmuccia, NW Italy. Mem Soc Geol Padova 33:135–145

    Google Scholar 

  • Shervais J (1979b) Thermal emplacement model for the Alpine lherzolite massif at Balmuccia, Italy. J Petrol 20:795–820

    Google Scholar 

  • Thompson RN (1974) Primary basalt and magma genesis. Contrib Mineral Petrol 45:317–324

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    Google Scholar 

  • Yang HY (1973) Crystallization of iron-free pigeonite in the system anorthite-diopside-enstatite-silica at atmospheric pressure. Am J Sci 273:488–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinigoi, S., Comin-Chiaramonti, P. & Alberti, A.A. Phase relations in the partial melting of the Baldissero spinel-lherzolite (Ivrea-Verbano zone, Western Alps, Italy). Contr. Mineral. and Petrol. 75, 111–121 (1980). https://doi.org/10.1007/BF00389772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389772

Keywords

Navigation