Skip to main content
Log in

First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this study, we used first-principles calculations based on density functional theory to investigate silicon and oxygen isotope fractionation factors among the most abundant major silicate minerals in granites, i.e., quartz and plagioclase (including albite and anorthite), and an important accessory mineral zircon. Combined with previous results of minerals commonly occurring in the crust and upper mantle (orthoenstatite, clinoenstatite, garnet, and olivine), our study reveals that the Si isotope fractionations in minerals are strongly correlated with SiO4 tetrahedron volume (or average Si–O bond length). The 30Si enrichment order follows the sequence of quartz > albite > anorthite > olivine ≈ zircon > enstatite > diopside, and the 18O enrichment follows the order of quartz > albite > anorthite > enstatite > zircon > olivine. Our calculation predicts that measurable fractionation of Si isotopes can occur among crustal silicate minerals during high-temperature geochemical processes. This work also allows us to evaluate Si isotope fractionation between minerals and silicate melts with variable compositions. Trajectory for δ30Si variation during fractional crystallization of silicate minerals was simulated with our calculated Si isotope fractionation factors between minerals and melts, suggesting the important roles of fractional crystallization to cause Si isotopic variations during magmatic differentiation. Our study also predicts that δ30Si data of ferroan anorthosites of the Moon can be explained by crystallization and aggregation of anorthite during lunar magma ocean processes. Finally, O and Si isotope fractionation factors between zircon and melts were estimated based on our calculation, which can be used to quantitatively account for O and Si isotope composition of zircons crystallized during magma differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anba AD, Jarzecki AA, Spiro TG (2005) Theoretical investigation of iron isotope fractionation between Fe(H2O)63 + and Fe(H2O)62 + : implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837. doi:10.1016/j.gca.2004.06.012

    Article  Google Scholar 

  • Appora I, Eiler JM, Matthews A, Stolper EM (2003) Experimental determination of oxygen isotope fractionations between CO2 vapor and soda-melilite melt. Geochim Cosmochim Acta 67:459–471. doi:10.1016/S0016-7037(02)01090-6

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132. doi:10.2138/am-1998-9-1022

    Article  Google Scholar 

  • Baldridge WS, Sharp ZD, Reid KD (1996) Quartz-bearing basalts: Oxygen isotopic evidence for crustal contamination of continental mafic rocks. Geochim Cosmochim Acta 60:4765–4772. doi:10.1016/S0016-7037(96)00264-5

    Article  Google Scholar 

  • Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562. doi:10.1103/RevModPhys.73.515

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261. doi:10.1063/1.1746492

    Article  Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478. doi:10.2138/rmg.2008.69.12

    Article  Google Scholar 

  • Bindeman I, Valley J (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205. doi:10.1007/s00410-002-0371-8

    Article  Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature Crystal-chemistry of Acmite, Diopside, Hedenbergite, Jadeite, Spodumene, and Ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochemistry 43:1–81. doi:10.2138/gsrmg.43.1.1

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochim Cosmochim Acta 53:2985–2995. doi:10.1016/0016-7037(89)90174-9

    Article  Google Scholar 

  • Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725–733. doi:10.1016/0016-7037(89)90015-X

    Article  Google Scholar 

  • Downs RT, Hazen RM, Finger LW (1994) The high-pressure crystal-chemistry of low albite and the origin of the pressure dependency of Al-Si ordering. Am Mineral 79:1042–1052

    Google Scholar 

  • Eiler JM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256. doi:10.1093/petrology/41.2.229

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364. doi:10.2138/gsrmg.43.1.319

    Article  Google Scholar 

  • Eiler JM, Farley KA, Valley JW et al (1995) Oxygen isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn Island lavas. Nature 377:138–141. doi:10.1038/377138a0

    Article  Google Scholar 

  • Eiler JM, Farley KA, Valley JW et al (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim Cosmochim Acta 61:2281–2293. doi:10.1016/S0016-7037(97)00075-6

    Article  Google Scholar 

  • Elardo SM, Draper DS, Shearer CK (2011) Lunar Magma Ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75:3024–3045. doi:10.1016/j.gca.2011.02.033

    Article  Google Scholar 

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. Rev Mineral Geochem 53:1–25

    Article  Google Scholar 

  • Finch RJ, Hanchar JM, Hoskin PWO, Burns PC (2001) Rare-earth elements in synthetic zircon: part 2. A single-crystal X-ray study of xenotime substitution. Am Mineral 86:681–689

    Article  Google Scholar 

  • Garlick GD (1966) Oxygen isotope fractionation in igneous rocks. Earth Planet Sci Lett 1:361–368. doi:10.1016/0012-821X(66)90026-4

    Article  Google Scholar 

  • Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the earth’s core. Nature 447:1102–1106. doi:10.1038/nature05927

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21:395502

    Google Scholar 

  • Grant FS (1954) The geological significance of variations in the abundances of the isotopes of silicon in rocks. Geochim Cosmochim Acta 5:225–242. doi:10.1016/0016-7037(54)90046-0

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS (2014) Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 1: principles, procedures, and evaluation of the method. Contrib Mineral Petrol. doi:10.1007/s00410-014-1033-3

    Google Scholar 

  • Harris C, Smith HS, le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallization and evidence for assimilation. Contrib Mineral Petrol 138:164–175. doi:10.1007/s004100050015

    Article  Google Scholar 

  • Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641–3662. doi:10.1103/PhysRevB.58.3641

    Article  Google Scholar 

  • Hu GX, Clayton RN (2003) Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope geothermometers. Geochim Cosmochim Acta 67:3227–3246

    Article  Google Scholar 

  • Huang F (2006) Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. Am Mineral 91:1385–1400. doi:10.2138/am.2006.1909

    Article  Google Scholar 

  • Huang F, Chen L, Wu Z, Wang W (2013) First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: implications for Mg isotope thermometry. Earth Planet Sci Lett 367:61–70. doi:10.1016/j.epsl.2013.02.025

    Article  Google Scholar 

  • Huang F, Wu Z, Huang S, Wu F (2014) First-principles calculations of equilibrium silicon isotope fractionation among mantle minerals. Geochim Cosmochim Acta 140:509–520. doi:10.1016/j.gca.2014.05.035

    Article  Google Scholar 

  • Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Rev Geophys 20:827–849. doi:10.1029/RG020i004p00827

    Article  Google Scholar 

  • King EM, Valley JW, Davis DW, Kowallis BJ (2001) Empirical determination of oxygen isotope fractionation factors for titanite with respect to zircon and quartz. Geochim Cosmochim Acta 65:3165–3175. doi:10.1016/S0016-7037(01)00639-1

    Article  Google Scholar 

  • Kirfel A, Lippmann T, Blaha P et al (2005) Electron density distribution and bond critical point properties for forsterite, Mg2 SiO4, determined with synchrotron single crystal X-ray diffraction data. Phys Chem Miner 32:301–313. doi:10.1007/s00269-005-0468-5

    Article  Google Scholar 

  • Krylov DP, Zagnitko VN, Hoernes S et al (2002) Oxygen isotope fractionation between zircon and water: experimental determination and comparison with quartz-zircon calibrations. Eur J Mineral 14:849–853

    Article  Google Scholar 

  • Le Maitre RW (1976) The chemical variability of some common igneous rocks. J Petrol 17:589–598. doi:10.1093/petrology/17.4.589

    Article  Google Scholar 

  • Levien L, Prewir CT, Weidner DJ et al (1980) Structure and elastic properties of quartz at pressure. Am Mineral 65:920–930

    Google Scholar 

  • Li XF, Liu Y (2010) First-principles study of Ge isotope fractionation during adsorption onto Fe(III)-oxyhydroxide surfaces. Chem Geol 278:15–22. doi:10.1016/j.chemgeo.2010.05.008

    Article  Google Scholar 

  • Li X, Liu Y (2011) Equilibrium Se isotope fractionation parameters: a first-principles study. Earth Planet Sci Lett 304:113–120. doi:10.1016/j.epsl.2011.01.022

    Article  Google Scholar 

  • Li X, Zhao H, Tang M, Liu Y (2009) Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications. Earth Planet Sci Lett 287:1–11. doi:10.1016/j.epsl.2009.07.027

    Article  Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140. doi:10.1016/0016-7037(79)90099-1

    Article  Google Scholar 

  • Méheut M, Schauble EA (2014) Silicon isotope fractionation in silicate minerals: insights from first-principles models of phyllosilicates, albite and pyrope. Geochim Cosmochim Acta 134:137–154. doi:10.1016/j.gca.2014.02.014

    Article  Google Scholar 

  • Méheut M, Lazzeri M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory. Geochim Cosmochim Acta 71:3170–3181. doi:10.1016/j.gca.2007.04.012

    Article  Google Scholar 

  • Méheut M, Lazzeri M, Balan E, Mauri F (2009) Structural control over equilibrium silicon and oxygen isotopic fractionation: a first-principles density-functional theory study. Chem Geol 258:28–37. doi:10.1016/j.chemgeo.2008.06.051

    Article  Google Scholar 

  • Mysen BO, Virgo D (1985) Structure and properties of fluorine-bearing aluminosilicate melts: the system Na2O-Al2O3-SiO2-F at 1 atm. Contrib Mineral Petrol 91:205–220. doi:10.1007/BF00413348

    Article  Google Scholar 

  • Ohashi Y (1984) Polysynthetically-twinned structures of enstatite and wollastonite. Phys Chem Miner 10:217–229. doi:10.1007/BF00309314

    Article  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048

    Article  Google Scholar 

  • Poitrasson F, Zambardi T (2015) An earth-moon silicon isotope model to track silicic magma origins. Geochim Cosmochim Acta 167:301–312. doi:10.1016/j.gca.2015.07.005

    Article  Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110. doi:10.1146/annurev.ea.05.050177.000433

    Article  Google Scholar 

  • Rustad JR, Bylaska EJ (2007) Ab initio calculation of isotopic fractionation in B(OH)3(aq) and BOH4-(aq). J Am Chem Soc 129:2222–2223. doi:10.1021/ja0683335

    Article  Google Scholar 

  • Savage PS, Moynier F (2013) Silicon isotopic variation in enstatite meteorites: clues to their origin and Earth-forming material. Earth Planet Sci Lett 361:487–496. doi:10.1016/j.epsl.2012.11.016

    Article  Google Scholar 

  • Savage PS, Georg RB, Williams HM et al (2011) Silicon isotope fractionation during magmatic differentiation. Geochim Cosmochim Acta 75:6124–6139. doi:10.1016/j.gca.2011.07.043

    Article  Google Scholar 

  • Savage PS, Georg RB, Williams HM et al (2012) The silicon isotope composition of granites. Geochim Cosmochim Acta 92:184–202. doi:10.1016/j.gca.2012.06.017

    Article  Google Scholar 

  • Savage PS, Georg RB, Williams HM, Halliday AN (2013) Silicon isotopes in granulite xenoliths: insights into isotopic fractionation during igneous processes and the composition of the deep continental crust. Earth Planet Sci Lett 365:221–231. doi:10.1016/j.epsl.2013.01.019

    Article  Google Scholar 

  • Schauble EA (2011) First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2 +) crystals. Geochim Cosmochim Acta 75:844–869. doi:10.1016/j.gca.2010.09.044

    Article  Google Scholar 

  • Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73:7110–7126. doi:10.1016/j.gca.2009.08.024

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc. doi:10.1039/jr9470000562

    Google Scholar 

  • Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266. doi:10.1016/S0016-7037(03)00090-5

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892

    Article  Google Scholar 

  • Wainwright JE, Starkey J (1971) A refinement of the structure of anorthite*,1. Zeitschrift für Krist 133:75–84. doi:10.1524/zkri.1971.133.133.75

    Article  Google Scholar 

  • Warren PH, Taylor GJ (2014) The Moon. In: Treatise on Geochemistry. Elsevier, pp 213–250

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principals, geological models and implications for isotopic inheritance. Trans R Soc Edinb Earth Sci 87:43–56. doi:10.1017/S0263593300006465

    Article  Google Scholar 

  • Wei C-S, Zheng Y-F, Zhao Z-F, Valley JW (2002) Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology 30:375. doi:10.1130/0091-7613(2002)030<0375:OANIEF>2.0.CO;2

    Article  Google Scholar 

  • Wentzcovitch RM (1991) Invariant molecular-dynamics approach to structural phase transitions. Phys Rev B 44:2358

    Article  Google Scholar 

  • Wentzcovitch RM, Yonggang GY, Wu Z (2010) Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory. Rev Mineral Geochem 71:59–98

    Article  Google Scholar 

  • Wu Z, Wentzcovitch RM (2007) Vibrational and thermodynamic properties of wadsleyite: A density functional study

  • Wu Z, Wentzcovitch RM, Umemoto K, et al (2008) Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications

  • Wu Z, Huang F, Huang S (2015) Isotope fractionation induced by phase transformation: first-principles investigation for Mg2SiO4. Earth Planet Sci Lett 409:339–347. doi:10.1016/j.epsl.2014.11.004

    Article  Google Scholar 

  • Yang HX, Ghose S (1995) High-Temperature Single-Crystal X-Ray-Diffraction Studies of the Ortho-Proto Phase-Transition in Enstatite, Mg2si2o6 at 1360 K. Phys Chem Miner 22:300–310

    Article  Google Scholar 

  • Zambardi T, Lundstrom CC, Li X, McCurry M (2014) Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation. Earth Planet Sci Lett 405:169–179. doi:10.1016/j.epsl.2014.08.020

    Article  Google Scholar 

  • Zhao ZF, Zheng YF (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80

    Article  Google Scholar 

  • Zheng Y-F (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307. doi:10.1016/0016-7037(91)90105-E

    Article  Google Scholar 

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091. doi:10.1016/0016-7037(93)90042-U

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by State Key Development Program of Basic Research of China (2014CB845905), the Natural Science Foundation of China (41325011, 41274087, 41173031, 41090370, 41473011), the 111 project, the Fundamental Research Funds for the Central Universities, and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund. The computations were conducted partly in Supercomputing Center of the University of Science and Technology of China and Shanghai supercomputer center. We are grateful to Franck Poitrasson for editorial handling, Merlin Méheut and anonymous reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Huang.

Additional information

Communicated by Franck Poitrasson.

Tian Qin and Fei Wu are Co-first authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, T., Wu, F., Wu, Z. et al. First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon. Contrib Mineral Petrol 171, 91 (2016). https://doi.org/10.1007/s00410-016-1303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1303-3

Keywords

Navigation