Skip to main content
Log in

Electron density distribution and bond critical point properties for forsterite, Mg2 SiO4, determined with synchrotron single crystal X-ray diffraction data

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A generalized X-ray scattering factor model experimental electron density distribution has been generated for the orthosilicate forsterite, using an essentially extinction and absorption free set of single crystal diffraction data recorded with intense, high energy synchrotron X-ray radiation (E=100.6 keV). A refinement of the model converged with an R(F)=0.0061. An evaluation of the bond critical point, bcp, properties of the distribution at the (3, −1) stationary points for the SiO and MgO bonded interactions, yielded values that agree typically within ~5%, on average, with theoretical values generated with quantum chemical computational strategies, using relatively robust basis sets. On the basis of this result, the modeling of the experimental distribution is considered to be adequate. As the bcp properties increase in magnitude, the MgO and SiO bonds decrease in length as calculated for a number of rock forming silicates. As asserted by Coppens (X-ray charge densities and chemical bonding. Oxford University Press, Oxford, 1997), large negative ∇2ρ(r c ) values, characteristic of shared interactions involving first row atoms, may not be characteristic of closed shell covalent bonded interactions involving second row Si, P and S atoms bonded to O. This study adds new evidence to the overall relatively good agreement between theoretical bcp properties generated with computational quantum strategies, on the one hand, and experimental properties generated with single crystal high energy synchrotron diffraction data on the other. The similarity of results not only provides a basis for using computational strategies for studying and modeling structures, defects and the reactivity of representative structures, but it also provides a basis for improving our understanding of the crystal chemistry of earth materials and the character of the SiO bonded interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aubert A, Porcher F, Souhassou M, Lecomte C (2003) Characterization of intra-framework and guest/host interactions in the AlPO4 −15 molecular sieve by charge-density analysis. Acta Cryst B59:687–700

    Article  Google Scholar 

  • Bader RFW (1990) Atoms in Molecules. Oxford Science Publications, Oxford, UK

    Google Scholar 

  • Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960

    CAS  Google Scholar 

  • Bader RFW, MacDougall PJ (1984) Toward a theory of chemical activity based on charge density. JACS 107:6788–6795

    Google Scholar 

  • Becker PJ, Coppens P (1974a) Extinction within the limit of validity of the Darwin transfer equations I General formalism for primary and secondary extinction and their applications to spherical crystals. Acta Cryst A30:129–147

    Google Scholar 

  • Becker PJ, Coppens P (1974b) Extinction within the limit of validity of the Darwin transfer equations II Refinement of extinction in spherical crystals of SrF2 and LiF. Acta Cryst A30:148–153

    Google Scholar 

  • Belov NV, Belova EN, Andrianova NH, Smirnova PF (1951) Determination of the parameters in olivine (forsterite) structure with the harmonic three dimensional synthesis. Dokl Akad Nauk SSSR 81:399–402

    CAS  Google Scholar 

  • Birle JD, Gibbs GV, Moore PB, Smith JV (1968) Structures of olivines. Amer Mineral 539:807–824

    Google Scholar 

  • Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, ISBN 3-9501031-1-2 Austria

  • Bouchard R, Hupfeld D, Lippmann T, Neuefeind, J, Neumann HB, Poulsen HF, Rütt U, Schmidt T, Schneider JR, von Zimmermann M (1974a) A triple-crystal diffractometer for high energy synchrotron radiation at the HASYLAB high-field wiggler beamline BW5. J Synchrotron Rad 5:90–101

    Article  Google Scholar 

  • Brown GE (1970) The crystal chemistry of the olivines, PhD Thesis. Virginia Tech, Blacksburg, p 121

  • Brown GE (1982) Olivines and spinels, reviews in mineralogy, orthosilicates, Chap 11. Mineralogical Society of America 5:275–383

    Google Scholar 

  • Brown, Bragg (1926) Die struktur des olivins. Z Kristallog 63:538–552

    Google Scholar 

  • Clementi E (1965) Tables of atomic functions. IBM J Res Dev 9(suppl)

  • Cohen RE (1994) First-principle theory of crystalline silica: SILICA, Chapt 10. In: Reviews in mineralogy, Vol 29. Heaney PJ, Prewitt CT, Gibbs GV (eds) American Mineralogist, Washington, pp 369–402

  • Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, Oxford

    Google Scholar 

  • Downs JW (1995) The electron density distribution of coesite. J Phys Chem 99:6849–6856

    Article  CAS  Google Scholar 

  • Downs JW, Swope RJ (1992) The Laplacian of the electron density and the electrostatic potential of danburite, CaB2 Si2 O8. J Phys Chem 96:4834–4840

    Article  CAS  Google Scholar 

  • Downs RT, Chang-Sheng Z, Duffy TS, Finger LW (1996) The equation of state of forsterite to 172 Gpa and effects of pressure media. Amer Mineral 81(1–2):51–55

    CAS  Google Scholar 

  • Downs RT, Gibbs GV, Boisen MB, Rosso KM (2002) A comparison of procrystal and ab intio model representations of the electron density distribution of minerals. Phys Chem Miner 29:369–385

    Article  CAS  Google Scholar 

  • Eichhorn K (1987) REDUCE. Program for data reduction of step scan measured reflection profiles for both neutron and X-rays, HASYLAB/DESY. Hamburg, Germany, Unpublished

  • Flensburg C, Madsen D (2000) Atoms in crystals - from experimental charges densities. Acta Cryst A56:24–28

    Article  Google Scholar 

  • Fuhr J, Sofo (2001) WIENROOT/SRC/aim_sofo_notes.ps.http://www.wien2k.at/lapw/

  • Fujino K, Sasaki S, Takeuchi Y, Sadanaga R (1981) X-ray determination of electron density distributions in forsterite, fayalite and tephroite. Acta Cryst B37:513–518

    Article  Google Scholar 

  • Gatti C (1997) TOPOND96 User’s manual, CNR–CSRSRC. Milano, Italy, pp 1–15

    Google Scholar 

  • Geisinger KL, Spackman MA, Gibbs GV (1987) Exploration of structure, electron density distribution and bonding in coesite with Fourier and pseudoatom refinement methods using single crystal X-ray diffraction data. J Phys Chem 91:3237–3244

    Article  CAS  Google Scholar 

  • Gibbs GV (1982) Molecules as models for bonding in silicates. Amer Mineral 67:421–450

    CAS  Google Scholar 

  • Gibbs GV, Hill FC Boisen MB (1997) The SiO bond and electron density distributions. Phys Chem Miner 24:167–178

    Article  CAS  Google Scholar 

  • Gibbs GV, Downs JW, Boisen MB (1994) The elusive SiO bond, SILICA, Chap 10. In: Reviews in mineralogy, Vol 29. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) American Mineralogist, Washington, pp 331–368

  • Gibbs GV, Boisen MB, Hill FC, Tamada O, Downs RT (1998) SiO and GeO bonded interactions as inferred from the bond critical point properties of electron density distributions. Phys Chem Miner 25:574–584

    Article  CAS  Google Scholar 

  • Gibbs GV, Rosso KM, Teter DM, Boisen MB, Bukowinski MST (1999) Model structures and properties of the electron density distribution for low quartz at pressure, A study of the SiO bond. J Mole Struct 486: 13–25

    Article  Google Scholar 

  • Gibbs GV, Boisen MB, Beverly LL, Rosso KM (2001) A computational quantum study of the bonded interactions in earth materials and structurally and chemically related molecules, Molecular modeling theory: applications in the geosciences. Reviews in Mineralogy and Geochemistry, Vol 42. In: Cygan RT, Kubicki JD (eds) Mineralogical Society of America, Washington, pp 345–382:331–368

  • Gibbs GV, Cox DF, Crawford TD, Boisen MB, Lim M (2002) A mapping of the electron localization function for the silica polymorphs: evidence for domains of electron pairs and sites of potential electrophilic attack. Phys Chem Miner 29:307–318

    Article  CAS  Google Scholar 

  • Gibbs GV, Cox DF, Boisen MB, Downs RT, Ross NL (2003a) The electron localization function: a tool for locating favorable proton docking sites in the silica polymorphs. Phys Chem Miner 30:305–316

    CAS  Google Scholar 

  • Gibbs GV, Whitten EW, Spackman MA, Stimpfl M, Downs RT, Carducci MD (2003b) An exploration of theoretical and experimental electron density distributions and SiO bonded interactions for the silica polymorph coesite. J Phys Chem B 107:12996–13006

    Article  CAS  Google Scholar 

  • Gibbs GV, Rosso KM, Cox DF, Ross DF, Boisen MB (2003c) A physical basis for Pauling’s definition of bond strength. Phys Chem Miner 30:317–320

    CAS  Google Scholar 

  • Gibbs GV, Cox DF, Ross NL (2004a) A modeling of the structure and favorable H-docking sites and defects for the high-pressure silica polymorph stishovite. Phys Chem Miner 31:232–239

    Article  CAS  Google Scholar 

  • Gibbs GV, Cox DF, Rosso KM, (2004b) A connection between empirical bond strength and the localization of electron density at the bond critical points of the SiO bonds in silicates. J Phys Chem 108:7643–7645

    Article  CAS  Google Scholar 

  • Gibbs GV, Cox DF, Rosso KM, Kirfel A, Lippmann T, Blaha P, Schwarz K (2005a) Experimental and theoretical bond critical point properties for model electron density distributions for earth materials. Phys Chem Miner 109 (in press)

  • Gibbs, GV, Cox DF, Ross NL, Crawford TD, Burt JB, Rosso KM (2005b) A mapping of the electron localization function for earth materials. Phys Chem Miner 109 (in press)

  • Gillespie RJ, Johnson SA (1997) Study of bond angles and bond lengths in disiloxane and related molecules in terms of the topology of the electron density and its Laplacian. Inorg Chem 36:3031–3039

    Article  CAS  PubMed  Google Scholar 

  • Hanke K, Zeeman J (1963) Verfeinerung der kristallstruktur von olivine. Naturwissenschaften 3:91–92

    Article  Google Scholar 

  • Hazen (1976) Effect of temperature and pressure on the crystal structure of forsterite. Amer Mineral 61:1280–1293

    CAS  Google Scholar 

  • Hazen RM, Finger LW (1980) Crystal structure of forsterite at 40 kbars. Carnegie Inst Wash Yearbook, vol 79, pp 364–367

  • Kirfel A, Gibbs GV (2000) Experimental electron density distributions and bonded interactions for fibrous zeolites natrolite, mesolite and scolecite and related materials. Phys Chem Miner 27:270–284

    Article  CAS  Google Scholar 

  • Kirfel A, Krane HG, Blaha P, Schwarz K, Lippmann T (2001) Electron-density in stishovite, SiO2 : a new high-energy synchrotron-radiation study. Acta Cryst A57:663–677

    Article  CAS  Google Scholar 

  • Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101:1583–1627

    Article  CAS  PubMed  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15–50

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  • Kudoh Y, Takeuchi Y (1985) The crystal structure of forsterite Mg2 SiO4 under high pressure up to 19 Kb. Z Kristallogr 171:291–302

    CAS  Google Scholar 

  • Kuntzinger S, Ghermani NE, Dusausoy Y, Lecomte C (1998) Distribution and topology of the electron density in a aluminosilicate compound from high resolution X-ray diffraction data: the case of scolecite. Acta Cryst B54:819–833

    Article  Google Scholar 

  • Lippmann T, Blaha p, Anderson Nh, Poulsen HF, Wolf T, Schneider JR, Schwarz KH (2003) Charge density analysis of YBa2Cu3 O6.98 Comparison of theoretical and experimental results. Acta Cryst A59:437–451

    Article  Google Scholar 

  • Luaña V, Costales A, More-Sánchez P, Martin Pendás A (2003) Ions in crystals: the topology of the electron density in ionic materials 4 The danburite (CaB2 Si2 O8) case and the occurrence of oxide-oxide bond paths in crystals. J Phys Chem B 107:4912–4921

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Pauling L (1960), The nature of the chemical bond, 3d edn. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  • Poulsen HF, Neuefeind J (1995) Multiple scattering in synchrotron studies of disordered materials: formalism and error estimation. Nucl Inst Meth B95:509–514

    CAS  Google Scholar 

  • Revesz AG, Stahlbush RE, Hughes HL (2000) Hydrogen in buried SiO2 layers, The Physics and Chemistry of SiO2 and Si-SiO2 interface Vol 4. In: Massoud HZ, Baumvol IJR, Hirose M, Poindexter EH (eds) The Electrochemical Society Inc, Pennington, pp 235–240

  • Sasaki S (1989) Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman’s method. KR Rep 88:1–45

    Google Scholar 

  • Saunders VR, Dovesi R, Roetti C, Causá M, Harrison NM Orlando R, ApráE (1998) CRYSTAL98 User’s manual. University of Torino, Torino, Italy, 1–170

  • Singh D (1994) Plane waves Pseudopotentials and the LAPW method. Klumer Academics, Dordrecht, Netherlands

    Google Scholar 

  • Sjöstedt E, Nordström L, Singh DJ (2000) An alternate way of linearizing the augmented plane wave method. Sol State Comm 114:15–24

    Article  Google Scholar 

  • Smith JV, Bailey SW (1963) Second review of AlO and SiO tetrahedral distances. Acta Cryst 16:801–811

    Article  CAS  Google Scholar 

  • Smyth JR, Hazen RM (1973) Crystal structures of forsterite and hortonolite at several temperatures up to 900 degrees C. Amer Mineral 58:588–593

    CAS  Google Scholar 

  • Spackman MA, Hill RJ, Gibbs GV (1987) Exploration of structure and bonding in stishovite via Fourier and pseudoatom refinement methods. Phys Chem Miner 14:139–150

    CAS  Google Scholar 

  • Stewart RF (1976) Electron population analysis with rigid pseudoatoms. Acta Cryst A32:565–574

    Article  Google Scholar 

  • Stewart RF, Spackman MA (1983) VALRAY, Users manual. Department of Chemistry. Carnegie Mellon University, Pittsburgh PA

  • Stewart RF, Spackman MA, Flensburg C (2000) VALRAY User’s manual, Version 2.1. Carnegie Mellon University & University of Copenhagen, Pittsburgh, PA

  • Terriberry TB, Cox DF, Bowman DA (2002) A tool for the interactive 3D visualization of electronic structure in molecules and solids. Comput Chem 26:313–319

    Article  CAS  PubMed  Google Scholar 

  • Van der Wal R, Vos A, Kirfel A (1987) Conflicting results for the deformation properties of forsterite, Mg2 SiO4. Acta Cryst B43:132–143

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent psuedopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  • Volkov A, Abramov Y, Coppens P, Gatti C (2000) On the origin of topological differences between experimental and theoretical crystal charge densities. Acta Cryst A56:332–339

    Article  Google Scholar 

  • Whitten AE, Dittrich B, Spackman MA, Turner P and Brown TC (2004) Charge density analysis of two polymorphs of antimony(III) oxide. Royal Soc Chem Dalton Trans, pp 23–29

Download references

Acknowledgments

The National Science Foundation and the U. S. Department of Energy are thanked for supporting this study in part with Grants EAR-9627458 (GVG, MB Boisen, Jr.), EAR-0229472 (NL Ross, GVG), DE-FG02-03ER15389 (JD Rimstidt, GVG), and DE-FG02-97ER14751 (DFC). This study was also generously supported by the National Computation Sciences Alliance under a SURA Block Grant (Project ndg), utilizing the IBM p690 at the National Center of Supercomputing Applications. A. Kirfel and T. Lippmann gratefully acknowledge financial support by the Bundesminister für Bildung und Forschung, contract No. 05 KS1PDA, under which the experimental study of forsterite, measurements, refinements and topological analyses were completed. With the exceptions of the sections on the experimental and data collection and the refinement strategies, much of this paper was written in large part by GVG when he was a Visiting Scholar at the University of Arizona in 2005. Bob Downs and the University Distinguished Professors Foundation at Virginia Tech are thanked for generously supporting the visit. Bob Downs, Charlie Prewitt, Marcus Oligero and Sue Robison are also thanked for making the visit a very worthwhile and profitable experience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Gibbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirfel, A., Lippmann, T., Blaha, P. et al. Electron density distribution and bond critical point properties for forsterite, Mg2 SiO4, determined with synchrotron single crystal X-ray diffraction data. Phys Chem Minerals 32, 301–313 (2005). https://doi.org/10.1007/s00269-005-0468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0468-5

Keywords

Navigation