Skip to main content

Advertisement

Log in

Clinopyroxene in postshield Haleakala ankaramite: 1. Efficacy of thermobarometry

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Magma storage depth is a fundamental aspect of a volcano’s magmatic plumbing system that may be resolved using mineral-melt thermobarometry, assuming crystal growth occurs at near-equilibrium conditions. We acquire major and minor element compositional analyses of whole rock, groundmass separates, and clinopyroxene in ankaramite erupted ca. 214 ka at Haleakala volcano to evaluate the efficacy of thermobarometry. Using various thermometer and barometer combinations, we obtain values of crystallization pressure (60–1500 MPa) that are generally consistent with those of previous studies, but find that the models most successful at recovering the conditions of relevant equilibrium experiments yield values at the low end of this range (≤950 MPa). We use quantitative EPMA spot analyses to transform X-ray element intensity maps into metal oxide concentrations maps and to produce qualitative pressure maps of whole crystals. The spatial context provided by this procedure reveals two compositionally distinct domain types not evident in the spot analysis data set, with median Na2O contents differing by up to 26 % between domains. Na-rich domains represent putative crystallization pressures that are up to 365 MPa higher than Na-poor domains, within individual crystals. The presence of Na-rich domains associated with euhedral facets in contact with matrix is not consistent with concentric growth at near-equilibrium conditions of decreasing pressure, but rather co-crystallization of both domains under conditions of partial disequilibrium. Conservatively assuming that low-Na regions are less prone to kinetic partitioning, crystallization pressures for the Haleakala ankaramite correspond to crustal levels. We conclude that the reservoir supplying postshield eruptions at Haleakala has not deepened into the mantle, as was reported in a previous application of clinopyroxene thermobarometry to Haleakala’s postshield magma (Chatterjee et al. 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar: application to the Aleutian volcanic center of Atka. Am Mineral 72:12–28

    Google Scholar 

  • Barsdell M (1988) Petrology and petrogenesis of clinopyroxene-rich tholeiitic lavas, Merelava Volcano, Vanuatu. J Petrol 29(5):927–964

    Article  Google Scholar 

  • Barsdell M, Berry RF (1990) Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu. J Petrol 31(3):747–777

    Article  Google Scholar 

  • Bartels KS, Kinzler RJ, Grove TL (1991) High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Mineral Petrol 108(3):253–270. doi:10.1007/bf00285935

    Article  Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib to Mineral Petrol 115:103–111. doi:10.1007/BF00712982

    Article  Google Scholar 

  • Bergmanis EC, Sinton JM, Trusdell FA (2000) Rejuvenated volcanism along the southwest rift zone, East Maui, Hawaii. Bull Volcanol 62(4–5):239–255. doi:10.1007/s004450000091

    Article  Google Scholar 

  • Chappell B (1992) Trace element analyses in rocks by X-ray spectrometry. Adv X-Ray Anal 34:263–276

    Google Scholar 

  • Chatterjee N, Bhattacharji S, Fein C (2005) Depth of alkalic magma reservoirs below Kolekole cinder cone, Southwest rift zone, East Maui, Hawaii. J Volcanol Geotherm Res 145(1–2):1–22. doi:10.1016/j.jvolgeores.2005.01.001

    Article  Google Scholar 

  • Chen CY, Frey FA, Garcia MO (1990) Evolution of alkalic lavas at Haleakala Volcano, East Maui, Hawaii. Contrib Mineral Petrol 105(2):197–218. doi:10.1007/bf00678986

    Article  Google Scholar 

  • Chen CY, Frey FA, Garcia MO, Dalrymple GB, Hart SR (1991) The tholeiite to alkalic basalt transition at Haleakala Volcano, Maui, Hawaii. Contrib Mineral Petrol 106(2):183–200. doi:10.1007/bf00306433

    Article  Google Scholar 

  • Clague DA, Sherrod DR (2014) Growth and degradation of Hawaiian volcanoes. In: Poland MP, Takahashi TJ, Landowski CM (eds) Characteristics of Hawaiian volcanoes. US Geological Survey, Washington, DC, pp 97–146

    Google Scholar 

  • Coombs DS, Wilkinson JFG (1969) Lineages and fractionation trends in undersaturated volcanic rocks from the East Otago volcanic province (New Zealand) and related rocks. J Petrol 10(3):440–501

    Article  Google Scholar 

  • Della-Pasqua FN, Varne R (1997) Primitive ankaramitic magmas in volcanic arcs; a melt-inclusion approach. Can Mineral 35(2):291–312

    Google Scholar 

  • Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba) Vanuatu. Contrib Mineral Petrol 114(1):79–100. doi:10.1007/bf00307867

    Article  Google Scholar 

  • Faure F, Arndt N, Libourel G (2006) Formation of spinifex texture in komatiites: an experimental study. J Petrol 47(8):1591–1610

    Article  Google Scholar 

  • Fodor RV, Galar P (1997) A view into the subsurface of Mauna Kea volcano, Hawaii: crystallization processes interpreted through the petrology and petrography of gabbroic and ultramafic xenoliths. J Petrol 38(5):581–624

    Article  Google Scholar 

  • Fodor RV, Keil K, Bunch TE (1975) Contributions to the mineral chemistry of Hawaiian rocks. IV. Pyroxenes in rocks from Haleakala and West Maui volcanoes, Maui, Hawaii. Contrib Mineral Petrol 50(3):173–195. doi:10.1007/bf00371038

    Article  Google Scholar 

  • Frey FA, Wise WS, Garcia MO, West H, Kwon ST, Kennedy A (1990) Evolution of Mauna Kea Volcano, Hawaii: petrologic and geochemical constraints on postshield volcanism. J Geophys Res 95(B2):1271–1300. doi:10.1029/JB095iB02p01271

    Article  Google Scholar 

  • Genske FS, Turner SP, Beier C, Schaefer BF (2012) The petrology and geochemistry of lavas from the Western Azores Islands of Flores and Corvo. J Petrol 53(8):1673–1708

    Article  Google Scholar 

  • Georgiev S, Marchev P, Heinrich CA, Von Quadt A, Peytcheva I, Manetti P (2009) Origin of nepheline-normative high-K ankaramites and the evolution of Eastern Srednogorie arc in SE Europe. J Petrol 50(10):1899–1933

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2):197–212

    Article  Google Scholar 

  • Gunn BM, Coy-Yll R, Watkins ND, Abranson CE, Nougier J (1970) Geochemistry of an oceanite-ankaramite-basalt suite from East Island, Crozet Archipelago. Contrib Mineral Petrol 28(4):319–339. doi:10.1007/bf00388954

    Article  Google Scholar 

  • Helz RT (1987) Diverse olivine types in lava of the 1959 eruption of Kilauea volcano and their bearing on eruption dynamics. US Geol Surv Prof Pap 1350:691–722

    Google Scholar 

  • Hollister LS, Gancarz AJ (1971) Compositional sector zoning in clinopyroxene from the Narce area, Italy. Am Mineral 56:950–979

    Google Scholar 

  • Hollister LS, Hargraves RB (1970) Compositional zoning and its significance in pyroxenes from two coarse grained Apollo 11 samples. Proceedings of Apollo 11 Lunar Science conference, vol 1, pp 541–550

  • Huckenholz HG (1973) The origin of fassaitic augite in the alkali basalt suite of the Hocheifel area, Western Germany. Contrib Mineral Petrol 40(4):315–326. doi:10.1007/bf00371022

    Article  Google Scholar 

  • Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83(1–2):136–140. doi:10.1007/bf00373086

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res 97(B5):2156–2202. doi:10.1029/91JB02840

    Google Scholar 

  • Kohut EJ, Stern RJ, Kent AJR, Nielsen RL, Bloomer SH, Leybourne M (2006) Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions. Contrib Mineral Petrol 152(2):201–221. doi:10.1007/s00410-006-0102-7

    Article  Google Scholar 

  • Kornprobst J, Ohnenstetter D, Ohnenstetter M (1981) Na and Cr contents in clinopyroxenes from peridotites: a possible discriminant between “sub-continental” and “sub-oceanic” mantle. Earth Planet Sci Lett 53(2):241–254

    Article  Google Scholar 

  • Kouchi A, Sugawara Y, Kashima K, Sunagawa I (1983) Laboratory growth of sector zoned clinopyroxenes in the system CaMgSi2O6–CaTiAl2O6. Contrib Mineral Petrol 83(1):177–184

    Article  Google Scholar 

  • Lacroix A (1916) Sur quelques roches volcaniques mélanocrates des Possessions françaises de l’océan Indien et du Pacifique

  • Lacroix A (1923) Minéralogie de Madagascar. Challamel, Paris, p 49

  • Lanari P, Vidal O, De Andrade V, Dubacq B, Lewin E, Grosch EG, Schwartz S (2014) XMapTools: a MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput Geosci 62:227–240. doi:10.1016/j.cageo.2013.08.010

    Article  Google Scholar 

  • Lange RL, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Rev Mineral Geochem 24(1):25–64

    Google Scholar 

  • Langenheim VAM, Clague DA (1987) The Hawaiiian-Emperor volcanic chain. Part II. Stratigraphic framework of volcanic rocks of the Hawaiian Islands. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, US Geol. Surv. Prof. Pap. 1350, pp 55–84

  • Langmuir CH (1989) Geochemical consequences of in situ crystallization. Nature 340(6230):199–205

    Article  Google Scholar 

  • Lerebour P, Rançon JP, Auge T (1989) The Grand Brûlé exploration drilling: new data on the deep framework of the Piton de la Fournaise volcano. Part 2: secondary minerals. J Volcanol Geotherm Res 36(1–3):129–137

    Article  Google Scholar 

  • Leung IS (1974) Sector-zoned titanaugites: morphology, crystal chemistry, and growth. Am Mineral 59(1–2):127–138

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Macdonald GA (1978) Geologic map of the crater section of Haleakala National Park, Maui, Hawaii. In: US Department of Interior/US Geological Survey Miscellaneous Investigation Series, pp Map I-1088

  • Macdonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5(1):82–133

    Article  Google Scholar 

  • Macdonald GA, Powers HA (1968) A further contribution to the petrology of Haleakala volcano, Hawaii. Geol Soc Am Bull 79(7):877–888

    Article  Google Scholar 

  • Macdonald GA, Abbot AT, Peterson FL (1983) Volcanoes in the sea. University of Hawaii Press, Honolulu

    Google Scholar 

  • Mahood GA, Baker DR (1986) Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: pantelleria, Strait of Sicily. Contrib Mineral Petrol 93(2):251–264. doi:10.1007/bf00371327

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78(1):85–98

    Article  Google Scholar 

  • Mollo S, Del P, Ventura G et al (2010) Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118:302–312. doi:10.1016/j.lithos.2010.05.006

    Article  Google Scholar 

  • Mollo S, Blundy JD, Iezzi G, Scarlato P, Langone A (2013) The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contrib Mineral Petrol 166(6):1633–1654. doi:10.1007/s00410-013-0946-6

    Article  Google Scholar 

  • Moore JG (1987) Subsidence of the Hawaiian Ridge. In: Volcanism in Hawaii, US Geol. Surv. Prof. Pap. 1350, pp 85–100

  • Moore JG, Ault WU (1965) Historic littoral cones in Hawaii. Pac Sci 19:3–11

    Google Scholar 

  • Moore JG, Clague DA (1992) Volcano growth and evolution of the island of Hawaii. Geol Soc Am Bull 104(11):1471–1484

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Naughton JJ, MacDonald GA, Greenberg VA (1980) Some additional potassium-argon ages of hawaiian rocks: the Maui volcanic complex of Molokai, Maui, Lanai and Kahoolawe. J Volcanol Geotherm Res 7(3–4):339–355. doi:10.1016/0377-0273(80)90037-2

    Article  Google Scholar 

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contrib Mineral Petrol 121(2):115–125. doi:10.1007/s004100050093

    Article  Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135(1):62–74

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139(5):541–554

    Article  Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks Part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133(1):122–135

    Article  Google Scholar 

  • Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33(4):431–453. doi:10.1016/0016-7037(69)90126-4

    Article  Google Scholar 

  • Ortiz Hernández LE (2000) An arc ankaramite occurrence in Central Mexico. Revista Mexicana de Ciencias Geológicas 17(1):34–44

    Google Scholar 

  • Pietruszka AJ, Heaton DE, Marske JP, Garcia MO (2015) Two magma bodies beneath the summit of Kilauea Volcano unveiled by isotopically distinct melt deliveries from the mantle. Earth Planet Sci Lett 413:90–100. doi:10.1016/j.epsl.2014.12.040

    Article  Google Scholar 

  • Poland MP, Miklius A, Montgomery-Brown EK (2014) Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. In: Poland MP, Takahashi TJ, Landowski CM (eds) Characteristics of Hawaiian volcanoes. US Geological Survey, Washington, D.C., pp 179–234

    Google Scholar 

  • Putirka K (1999) Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib Mineral Petrol 135(2):151–163

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123(1):92–108. doi:10.1007/s004100050145

    Article  Google Scholar 

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88(10):1542–1554

    Article  Google Scholar 

  • Ryan MP (1987) Neutral buoyancy and the mechanical evolution of magmatic systems. In: Mysen BO (ed) Magmatic processes: Physicochemical principles; Special Publication No 1. The Geochemical Society, University Park, pp 259–287

    Google Scholar 

  • Sherrod DR, Nishimitsu Y, Tagami T (2003) New K–Ar ages and the geologic evidence against rejuvenated-stage volcanism at Haleakala, East Maui, a postshield-stage volcano of the Hawaiian island chain. Geol Soc Am Bull 115(6):683–694

    Article  Google Scholar 

  • Sherrod DR, Hagstrum JT, McGeehin JP, Champion DE, Trusdell FA (2006) Distribution, 14C chronology, and paleomagnetism of latest Pleistocene and Holocene lava flows at Haleakalā volcano, Island of Maui, Hawai‘i: a revision of lava flow hazard zones. J Geophys Res 111(B5):B05205. doi:10.1029/2005jb003876

    Google Scholar 

  • Sherrod DR, Sinton JM, Watkins SE, Brunt KM (2007) Geologic map of the State of Hawai`i. In: US Geol Surv Open-File Report, http://pubs.usgs.gov/of/2007/1089/

  • Sinton JM (2005) Geologic mapping, volcanic stages and magmatic processes in Hawaiian volcanoes In: EOS (ed) Amer Geophys Union Trans. vol 86, pp V51A–1471

  • Sinton J, Grönvold K, Sæmundsson K (2005) Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochem Geophys Geosyst 6(12):Q12009. doi:10.1029/2005gc001021

    Article  Google Scholar 

  • Stearns HT, Macdonald GA (1942) Geology and ground-water resources of the island of Maui, Hawaii. Hawaii Div Hydrography Bull: 7344

  • Strong DF (1969) Formation of the hour-glass structure in augite. Mineral Mag 37(288):472–479

    Article  Google Scholar 

  • Sturm R (2002) PX-NOM—an interactive spreadsheet program for the computation of pyroxene analyses derived from the electron microprobe. Comput Geosci 28(4):473–483. doi:10.1016/S0098-3004(01)00083-8

    Article  Google Scholar 

  • Tilling RI, Kauahikaua J, Brantley SR, Neal C (2014) The Hawaiian volcano observatory—a natural laboratory for studying basaltic volcanism. In: Poland MPTTJ, Landowski CM (eds) Characteristics of Hawaiian Volcanoes. US Geological Survey, Washington, D.C., pp 2–64

    Google Scholar 

  • Wass SY (1973) The origin and petrogenetic significance of hour-glass zoning in titaniferous clinopyroxenes. Mineral Mag 39(302):133–144. doi:10.1180/minmag.1973.039.302.01

    Article  Google Scholar 

  • Welsch B, Faure F, Famin V, Baronnet A, Bachèlery P (2013) Dendritic crystallization: a single process for all the textures of olivine in basalts? J Petrol 54(3):539–574

    Article  Google Scholar 

  • Wolfe EW, Wise WS, Dalrymple GB (1997) The geology and petrology of Mauna Kea Volcano, Hawaii; a study of postshield volcanism. US Geol Surv Prof Pap 1557

  • Welsch B, Hammer JE, Baronnet A, Jacob S, Hellebrand E, Sinton J (2015) Clinopyroxene in postshield Haleakala ankaramite. 2. Texture, compositional zoning and supersaturation in the magma. Contrib Mineral Petrol. doi:10.1007/s00410-015-1213-9

    Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3(3):342–532

    Article  Google Scholar 

Download references

Acknowledgments

JoAnn Sinton is gratefully acknowledged for the loan of many loose crystals and for thin section preparation. Olivier Odon is also thanked for his help with the Haleakala DEM. The manuscript was improved with comments from reviewers Keith Putirka and Matteo Masotta. This work was supported by NSF EAR 12-20084 to JEH and is SOEST publication number 9529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Welsch.

Additional information

Communicated by Gordon Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. SM1

XP Photomicrograph of Ka02 (TIFF 3083 kb)

Fig. SM2

Photomosaic of loose crystal aug3, showing locations of analytical spots reported in Table 4, and various textural domains. Image types are as indicated: RL= reflected light; BSE= back-scattered electron, and RGB= X-ray intensity composites, with channels as defined in the legend. Width of top image is approximately 1 cm (TIFF 3767 kb)

Fig. SM3

Thermobarometry models applied to the experimental data sets of Baker and Eggler 1987, Bartels, et al. 1991, Kinzler and Grove 1992, and Putirka, et al. 1996. (a) The barometers of Putirka et al. (2003), Putirka et al. (1996) and Putirka (2008) yield significantly different results, particularly when combined with different input temperatures. The preferred (a) thermometer (Putirka, et al. 2003) and (b) barometer (Eq. 32b of Putirka 2008, used with temperature obtained using the thermometer of Putirka et al., 1996) are shown with error envelopes that indicate perfect recovery of experimental values ± 43 °C in temperature and 150 MPa in pressure, reflecting the average misfit of the preferred thermometer and barometer. (TIFF 5363 kb)

Fig. SM4

Conventional histograms showing distributions of Al2O3 and Na2O wt. % for crystal Ka02-04 obtained from calibration of X-ray intensity maps as described in the text (TIFF 9344 kb)

Fig. SM5

Compositional correlations with pressure for experimental (left) and natural (right) crystal-liquid pairings and application of the preferred thermobarometers. Solid and dashed lines indicate median values obtained from 2D frequency histograms of element maps of spongy and non-spongy regions of crystal Ka02-04, respectively (TIFF 8283 kb)

Fig. SM6

Linear correlations of X-ray counts (scaled to 0-255) obtained in EMP mapping of various elements (x-axes) against oxide weight percents obtained in quantitative EMP-WDS analysis (y-axes). The spots are marked on the BSE images collected concurrently using Photoshop image processing software. The coordinates of the marked spots are read into a MATLAB script that extracts and averages the intensity values for 9-12 pixels in the element map (TIFF 5134 kb)

Fig. SM7

2D frequency distributions of elemental covariations in three Qkuls clinopyroxene crystals. Linear correlations between oxide wt.% abundance and X-ray counts (Fig. SM6) are used to estimate oxide wt.% element for each of the ca. 300k pixels in each element map. The arithmetic means (white dots) differ from modal values in cases where the distributions are non-normal (e.g., SM4). The 2D frequency histograms reveal areally-dominant compositions in a manner that is not apparent in the sparser sampling afforded by spot analyses (Fig. 5). Although the compositions of distinct textural regions overlap substantially, spongy areas are compositionally distinct from non-spongy regions (TIFF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, J., Jacob, S., Welsch, B. et al. Clinopyroxene in postshield Haleakala ankaramite: 1. Efficacy of thermobarometry. Contrib Mineral Petrol 171, 7 (2016). https://doi.org/10.1007/s00410-015-1212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1212-x

Keywords

Navigation