Skip to main content
Log in

Oxygen isotope and trace element evidence for three-stage petrogenesis of the youngest episode (260–79 ka) of Yellowstone rhyolitic volcanism

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report the first high-precision δ18O analyses of glass, δ18O of minerals, and trace element concentrations in glass and minerals for the 260–79 ka Central Plateau Member (CPM) rhyolites of Yellowstone, a >350 km3 cumulative volume of lavas erupted inside of 630 ka Lava Creek Tuff (LCT) caldera. The glass analyses of these crystal-poor rhyolites provide direct characterization of the melt and its evolution through time. The δ18Oglass values are low and mostly homogeneous (4.5 ± 0.14 ‰) within and in between lavas that erupted in four different temporal episodes during 200 ka of CPM volcanism with a slight shift to lower δ18O in the youngest episode (Pitchstone Plateau). These values are lower than Yellowstone basalts (5.7–6 ‰), LCT (5.5 ‰), pre-, and extracaldera rhyolites (~7–8 ‰), but higher than the earliest 550–450 ka post-LCT rhyolites (1–2 ‰). The glass δ18O value is coupled with new clinopyroxene analyses and previously reported zircon analyses to calculate oxygen isotope equilibration temperatures. Clinopyroxene records >900 °C near-liquidus temperatures, while zircon records temperatures <850 °C similar to zircon saturation temperature estimates. Trace element concentrations in the same glass analyzed for oxygen isotopes show evidence for temporal decreases in Ti, Sr, Ba, and Eu—related to Fe–Ti oxide and sanidine (±quartz) crystallization control, while other trace elements remain similar or are enriched through time. The slight temporal increase in glass Zr concentrations may reflect similar or higher temperature magmas (via zircon saturation) through time, while previosuly reported temperature decreases (e.g., Ti-in-quartz) might reflect changing Ti concentrations with progressive melt evolution. Multiple analyses of glass across single samples and in profiles across lava flow surfaces document trace element heterogeneity with compatible behavior of all analyzed elements except Rb, Nb, and U. These new data provide evidence for a three-stage geochemical evolution of these most recent Yellowstone rhyolites: (1) repeated batch melting events at the base of a homogenized low-δ18O intracaldera fill resulting in liquidus rhyolite melt and a refractory residue that sequesters feldspar-compatible elements over time. This melting may be triggered by conductive "hot plate" heating by basaltic magma intruding beneath the Yellowstone caldera resulting in contact rhyolitic melt that crystallizes early clinopyroxene and/or sanidine at high temperature. (2) Heterogeneity within individual samples and across flows reflects crystallization of these melts during preeruptive storage of magma at at lower, zircon-saturated temperatures. Compatible behavior and variations of most trace elements within individual lava flows are the result of sanidine, quartz, Fe–Ti oxide, zircon, and chevkinite crystallization at this stage. (3) Internal mixing immediately prior to and/or during eruption disrupts, these compositional gradients in each parental magma body that are preserved as melt domains distributed throughout the lava flows. These results based on the most recent and best-preserved volcanic products from the Yellowstone volcanic system provide new insight into the multiple stages required to generate highly fractionated hot spot and rift-related rhyolites. Our proposed model differs from previous interpretations that extreme Sr and Ba depletion result from long-term crystallization of a single magma body—instead we suggest that punctuated batch melting events generated a sanidine-rich refractory residue and a melt source region progressively depleted in Sr and Ba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allan ASR, Morgan DJ, Wilson CJN, Millet M-A (2013) From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. Contrib Mineral Petrol 166:143–164. doi:10.1007/s00410-013-0869-2

    Article  Google Scholar 

  • Almeev RR, Bolte T, Nash BP, Holtz F, Erdmann M, Cathey HE (2012) High-temperature, low-H2O Silicic magmas of the Yellowstone hotspot: an experimental study of rhyolite from the Bruneau–Jarbidge Eruptive Center, Central Snake River Plain, USA. J Petrol 53:1837–1866. doi:10.1093/petrology/egs035

    Article  Google Scholar 

  • Anderson AT, Davis AM, Lu F (2000) Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. J Petrol 41:449–473

    Article  Google Scholar 

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132

    Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49:2277–2285. doi:10.1093/petrology/egn068

    Article  Google Scholar 

  • Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. J Volcanol Geoth Res 18:57–115

    Article  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th, and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Befus KS, Manga M, Gardner JE, Williams M (2015a) Ascent and emplacement dynamics of obsidian lavas inferred from microlite textures. Bull Volcanol 77:88. doi:10.1007/s00445-015-0971-6

    Article  Google Scholar 

  • Befus KS, Watkins J, Gardner JE, Richard D, Befus KM, Miller NR, Dingwell DB (2015b) Spherulites as in situ recorders of thermal history in lava flows. Geology 43:647–650. doi:10.1130/G36639.1

    Article  Google Scholar 

  • Bindeman IN, Simakin AG (2014) Rhyolites—hard to produce, but easy to recycle and sequester: integrating microgeochemical observations and numerical models. Geosphere 10:930–957. doi:10.1130/GES00969.1

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2001) Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205. doi:10.1007/s00410-002-0371-8

    Article  Google Scholar 

  • Bindeman IN, Valley JW, Wooden JL, Persing HM (2001) Post-caldera volcanism: in situ measurement of U–Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera. Earth Planet Sci Lett 189:197–206

    Article  Google Scholar 

  • Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193. doi:10.1093/petrology/egm075

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Marrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334. doi:10.1016/j.chemgeo.2013.05.028

    Article  Google Scholar 

  • Burgisser A, Bergantz GW (2011) A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471:212–215. doi:10.1038/nature09799

    Article  Google Scholar 

  • Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: textural and δD–H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405:52–61. doi:10.1016/j.epsl.2014.08.012

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Christiansen RL (2001) The Quaternary and pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. US Geol Surv Prof Pap 729-G:145

    Google Scholar 

  • Christiansen RL, Blank HR (1972) Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park. US Geological Survey Professional Paper 729-B

  • Christiansen RL, Lowenstern JB, Smith RB, Heasler H, Morgan LA, Nathenson M, Mastin LG, Muffler LPJ, Robinson JE (2007) Preliminary assessment of volcanic and hydrothermal hazards in Yellowstone National Park and vicinity. USGS Open-File Report 1071

  • Colón DP, Bindeman IN, Ellis BenS, Schmitt AK, Fisher CM (2015) Hydrothermal alteration and melting of the crust during the Columbia River Basalt-Snake River Plain transition and the origin of low-δ18O rhyolites of the central Snake River Plain. Lithos 224–225:310–323. doi:10.1016/j.lithos.2015.02.022

    Article  Google Scholar 

  • Eaton GP, Christiansen RL, Iyer HM, Pitt AD, Mabey DR, Blank HR, Zietz I, Gettings ME (1975) Magma beneath Yellowstone National Park. Science 188:787–796

    Article  Google Scholar 

  • Ellis BS, Bachmann O, Wolff JA (2014) Cumulate fragments in silicic ignimbrites: the case of the Snake River Plain. Geology 42:431–434. doi:10.1130/G35399.1

    Article  Google Scholar 

  • Farrell J, Smith RB, Husen S, Diehl T (2014) Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys Res Lett 41:3068–3073. doi:10.1002/2014GL059588

    Article  Google Scholar 

  • Gansecki CA, Lowenstern JB (1995) Pre-eruptive volatile compositions of the Lava Creek Tuff magma, Yellowstone Plateau Volcanic Field. EOS Trans AGU 76:F665

    Google Scholar 

  • Gardner JE, Befus KS, Watkins J, Hesse M, Miller N (2012) Compositional gradients surrounding spherulites in obsidian and their relationship to spherulite growth and lava cooling. Bull Volcanol 74:1865–1879. doi:10.1007/s00445-012-0642-9

    Article  Google Scholar 

  • Gerlach TM, McGee KA, Elias T, Sutton AJ, Doukas MP (2002) Carbon dioxide emission rate of Kilauea Volcano: implications for primary magma and the summit reservoir. J Geophys Res 107:2189. doi:10.1029/2001JB000407

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Girard G, Stix J (2009) Magma recharge and crystal mush rejuvenation associated with early post-collapse Upper Basin Member rhyolites, Yellowstone Caldera, Wyoming. J Petrol 50:2095–2125. doi:10.1093/petrology/egp070

    Article  Google Scholar 

  • Girard G, Stix J (2010) Rapid extraction of discrete magma batches from a large differentiating magma chamber: the Central Plateau Member rhyolites, Yellowstone Caldera, Wyoming. Contrib Mineral Petrol 160:441–465. doi:10.1007/s00410-009-0487-1

    Article  Google Scholar 

  • Graham CM, Harmon RS, Sheppard SMF (1984) Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. Am Mineral 69:128–138

    Google Scholar 

  • Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT, Sutton SR, Rivers ML (2012a) Timescales of quartz crystallization and the longevity of the Bishop giant magma body. PLoS One 7:e37492. doi:10.1371/journal.pone.0037492.s001

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012b) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890. doi:10.1093/petrology/egr080

    Article  Google Scholar 

  • Hildreth W (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap 180:43–76

    Google Scholar 

  • Hildreth W, Christiansen RL, O’Neil JR (1984) Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau volcanic field. J Geophys Res 89:8339–8369

    Article  Google Scholar 

  • Hildreth W, Halliday AN, Christiansen RL (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. J Petrol 32:63–138

    Article  Google Scholar 

  • Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41:1365–1396

    Article  Google Scholar 

  • Huang HH, Lin FC, Schmandt B, Farrell J, Smith RB, Tsai VC (2015) The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348:773–776. doi:10.1126/science.aaa5648

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988a) Melting the roof of a chamber containing a hot, turbulently convecting fluid. J Fluid Mech 188:107–131

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988b) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Hurwitz S, Lowenstern JB (2014) Dynamics of the Yellowstone hydrothermal system. Rev Geophys 51:375–411

    Article  Google Scholar 

  • Lanphere MA, Champion DE, Christiansen RL, Izett GA, Obradovich JD (2002) Revised ages for tuffs of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geol Soc Am Bull 114:559–568. doi:10.1130/0016-7606(2002)114<0559:RAFTOT>2.0.CO;2

    Article  Google Scholar 

  • Leeman WP, Phelps DW (1981) Partitioning of rare earths and other trace elements between sanidine and coexisting volcanic glass. J Geophys Res 86:10193–10199

    Article  Google Scholar 

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42–70. doi:10.1130/GES00061.1

    Article  Google Scholar 

  • Loewen MW, Kent AJ (2012) Sources of elemental fractionation and uncertainty during the analysis of semi-volatile metals in silicate glasses using LA-ICP-MS. J Anal At Spectrom 27:1502–1508. doi:10.1039/c2ja30075c

    Article  Google Scholar 

  • Lowenstern JB, Bergfeld D, Evans WC, Hunt HG (2015) Origins of geothermal gasses at Yellowstone. J Volcanol Geoth Res 302:87–101

    Article  Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Article  Google Scholar 

  • Matthews NE, Vazquez JA, Calvert AT (2015) Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U–Pb dating of sanidine and zircon crystals. Geochem Geophys Geosyst. doi:10.1002/2015GC005881

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Nolan GS, Bindeman IN (2013) Experimental investigation of rates and mechanisms of isotopic exchange (O, H) between volcanic ash and isotopically-labeled water. Geochim Cosmochim Acta 111:5–27. doi:10.1016/j.gca.2013.01.020

    Article  Google Scholar 

  • Rivera TA, Schmitz MD, Crowley JL, Storey M (2014) Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA. Geology 42:643–646. doi:10.1130/G35808.1

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 31:38–61

    Article  Google Scholar 

  • Scott WE, Hoblitt RP, Torres RC,  Self S, Martinez MML, Nillos T (1996) Pyroclastic flows of the June 15, 1991, climactic eruption of Mount Pinatubo. In: Newhall, CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, pp 545–570

  • Seligman A, Bindeman I, Jicha B, Ellis B, Ponomareva V, Leonov V (2014) Multi-cyclic and isotopically diverse silicic magma generation in an arc volcano: gorely eruptive center, Kamchatka, Russia. J Petrol 55:1561–1594. doi:10.1093/petrology/egu034

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Simakin AG, Bindeman IN (2012) Remelting in caldera and rift environments and the genesis of hot, “recycled” rhyolites. Earth Planet Sci Lett 337–338:224–235. doi:10.1016/j.epsl.2012.04.011

    Article  Google Scholar 

  • Sparks RSJ, Huppert HE, Turner JS, Sakuyama M, O’Hara MJ (1984) The fluid dynamics of evolving magma chambers [and discussion]. Philos Trans R Soc Lond 310:511–534

    Article  Google Scholar 

  • Stelten ME, Cooper KM, Vazquez JA, Reid MR, Barfod GH, Wimpenny J, Yin Q (2013) Magma mixing and the generation of isotopically juvenile silicic magma at Yellowstone caldera inferred from coupling 238U–230Th ages with trace elements and Hf and O isotopes in zircon and Pb isotopes in sanidine. Contrib Mineral Petrol 166:587–613. doi:10.1007/s00410-013-0893-2

    Article  Google Scholar 

  • Taylor HP, Sheppard SM (1986) Igneous rocks; I, processes of isotopic fractionation and isotope systematics. Rev Mineral Geochem 16:227–271

    Google Scholar 

  • Taylor HP, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545

    Article  Google Scholar 

  • Thomas JB, Bodnar RJ, Shimizu N, Sinha AK (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Acta 66:2887–2901

    Article  Google Scholar 

  • Till CB, Vazquez JA, Boyce JW (2015) Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology 43:695–698. doi:10.1130/G36862

    Article  Google Scholar 

  • Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73:7110–7126. doi:10.1016/j.gca.2009.08.024

    Article  Google Scholar 

  • Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266. doi:10.1016/S0016-7037(03)00090-5

    Article  Google Scholar 

  • Vance JA (1969) On synneusis. Contrib Mineral Petrol 24:7–29

    Article  Google Scholar 

  • Vazquez JA, Reid MR (2002) Time scales of magma storage and differentiation of voluminous high-silica rhyolites at Yellowstone caldera, Wyoming. Contrib Mineral Petrol 144:274–285. doi:10.1007/s00410-002-0400-7

    Article  Google Scholar 

  • Vazquez JA, Kyriazis SF, Reid MR, Sehler RC, Ramos FC (2009) Thermochemical evolution of young rhyolites at Yellowstone: evidence for a cooling but periodically replenished postcaldera magma reservoir. J Volcanol Geoth Res 188:186–196. doi:10.1016/j.jvolgeores.2008.11.030

    Article  Google Scholar 

  • Venezky DY, Rutherford MJ (1999) Petrology and Fe–Ti oxide reequilibration of the 1991 Mount Unzen mixed magma. J Volcanol Geoth Res 89:213–230

    Article  Google Scholar 

  • Watson EB, Harrison T (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watts KE, Bindeman IN, Schmitt AK (2012) Crystal scale anatomy of a dying supervolcano: an isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contrib Mineral Petrol 164:45–67. doi:10.1007/s00410-012-0724-x

    Article  Google Scholar 

  • Wilson CJN, Charlier BLA (2009) Rapid rates of magma generation at contemporaneous magma systems, Taupo Volcano, New Zealand: insights from U–Th model-age spectra in zircons. J Petrol 50:875–907. doi:10.1093/petrology/egp023

    Article  Google Scholar 

  • Wohletz K, Civetta L, Orsi G (1999) Thermal evolution of the Phlegraean magmatic system. J Volcanol Geoth Res 91:381–414

    Article  Google Scholar 

  • Wolff JA, Balsley SD, Gregory RT (2002) Oxygen isotope disequilibrium between quartz and sanidine from the Bandelier Tuff, New Mexico, consistent with a short residence time of phenocrysts in rhyolitic magma. J Volcanol Geoth Res 116:119–135

    Article  Google Scholar 

  • Wotzlaw JF, Bindeman IN, Watts KE, Schmitt AK, Caricchi L, Schltegger U (2014) Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology 42:807–810. doi:10.1130/G35979.1

    Article  Google Scholar 

  • Wotzlaw JF, Bindeman IN, Stern R, D’Abzac F-X, Schltegger U (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Nat Sci Rep 5:14026. doi:10.1038/srep14026

    Article  Google Scholar 

Download references

Acknowledgments

Ken Befus generously shared many of the samples examined in this study. Jim Palandri provided assistance with stable isotope analyses. Rick Hervig provided preliminary SIMS analyses. We acknowledge helpful and constructive reviews provided by Chris Harris and an anonymous reviewer as well as editorial handling by Jochen Hoefs.

Funding

This study was funded by the National Science Foundation (Grant Number EAR/CAREER-844772 to I.N.B.) and the Department of the Geological Sciences at the University of Oregon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Loewen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loewen, M.W., Bindeman, I.N. Oxygen isotope and trace element evidence for three-stage petrogenesis of the youngest episode (260–79 ka) of Yellowstone rhyolitic volcanism. Contrib Mineral Petrol 170, 39 (2015). https://doi.org/10.1007/s00410-015-1189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1189-5

Keywords

Navigation