Skip to main content
Log in

The effect of silica activity on the diffusion of Ni and Co in olivine

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:

$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$

with Ea(Ni) = − 284.3 kJ mol−1 and Ea(Co) = − 275.9 kJ mol−1, with an uncertainty of ±10.2 kJ mol−1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Buening DK, Buseck PR (1973) Fe–Mg lattice diffusion in olivine. J Geophys Res 78:6852–6862

    Article  Google Scholar 

  • Campbell FE, Roeder P (1968) The stability of olivine and pyroxene in the Ni–Mg–Si–O system. Am Mineral 53:257–268

    Google Scholar 

  • Chakraborty S (1997) Rates and mechanisms of Fe–Mg interdiffusion in olivine at 980 degrees–1300 degrees C. J Geophys Res 102(B6):12317–12331

    Article  Google Scholar 

  • Chakraborty S (2008) Diffusion in solid silicates: a tool to track timescales of processes comes of age. Ann Rev Earth Planet Sci 36:153–190

    Article  Google Scholar 

  • Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev Mineral Geochem 72(1):603–639  

    Article  Google Scholar 

  • Clark AM, Long JVP (1971) The anisotropic diffusion of nickel in olivine. In: Sherwood JN, Chadwicwk AV, Muir WM, Swinton FL (eds) Diffusion processes. In: Sherwood JN et al (eds) Proceedings of the Thomas Graham memorial symposium, vol 2. University of Strathclyde, vol 2. Gordon and Breach, New York, pp 511–521

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  • Dohmen R, Chakraborty S, Palme H,  Rammensee W (1997) High-temperature formation of iron-oxide-rich olivine in the early solar system: experimental simulation with thermodynamic and kinetic analysis of a solid-solid reaction mediated by a gas phase. Meteorit Planet SCI 32:A35–A36

  • Dohmen R, Chakraborty S, Palme H, Rammensee W (1998) Solid–solid reactions mediated by a gas phase: an experimental study of reaction progress and the role of surfaces in the system olivine + iron metal. Am Mineral 83:970–984

    Google Scholar 

  • Dohmen R, Becker HW, Chakraborty S (2007) Fe-Mg diffusion in olivine I: experimental determination between 700 and 1,200 degrees C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Mineral 34:389–407

    Article  Google Scholar 

  • Eggins SM, Shelley JMG (2002) Compositional heterogeneity in NIST SRM 610-617 glasses. Geostand Newslett J Geostand Geoanal 26:269–286

    Article  Google Scholar 

  • Grutzeck MW, Muan A (1988) Phase relations at liquidus temperatures in the system MgO–NiO–SiO2. J Am Ceram Soc 71:638–681

    Article  Google Scholar 

  • Hermann J, O’Neill HSC, Berry AJ (2005) Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Mineral Petrol 48:746–760

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Holzapfel C, Chakraborty S, Rubie DC, Frost DJ (2007) Effect of pressure on Fe–Mg, Ni and Mn diffusion in (FexMg1−x)2SiO4 olivine. Phys Earth Planet Inter 162:186–198

    Article  Google Scholar 

  • Ito M, Yurimoto H, Morioka M, Nagasawa H (1999) Co2+ and Ni2+ diffusion in olivine determined by secondary ion mass spectrometry. Phys Chem Miner 26:425–431

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouch S, Faure K, Sharygin VV, Kuzmin D (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Sharygin VV, Pokhilenko VP, Sobolev NV (2009) Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 112S:213–222

    Article  Google Scholar 

  • Maier J (1993a) Defect chemistry—composition, transport, and reactions in the solid state. 1. Thermodynamics. Angew Chem Int Ed Engl 32(3):313–335

    Article  Google Scholar 

  • Maier J (1993b) Defect chemistry—composition, transport, and reactions in the solid state. 2. Kinetics. Angew Chem Int Ed Engl 32(4):528–542

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC, Klemme S (2009) Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Mineral Petrol 158:485–504

    Article  Google Scholar 

  • Martrosov VN, Matrosova TA, Kupchenko MI, Pestryakov EV, Pavlovskij LK (2002) Growth of activated forsterite crystals. Poverkhnost Rentgenovskie sinkhronnye i nejtronnye issledovaniya 5:30–34

    Google Scholar 

  • Misener DJ (1972) Cationic diffusion in Fe–Mg olivine at elevated pressure and temperature. In: Hofmann AW, Giletti BJ, Yoder HS Jr, Yund RA (eds) Geochemical transport and kinetics. Carnegie Institute of Washington, Washington, DC, pp 117–129

    Google Scholar 

  • Morioka M (1980) Cation diffusion in olivine. 1. Cobalt and magnesium. Geochim Cosmochim Acta 44:759–762

    Article  Google Scholar 

  • Morioka M (1981) Cation diffusion in olivine. 2. Ni–Mg, Mn–Mg, Mg and Ca. Geochim Cosmochim Acta 45:1573–1580

    Article  Google Scholar 

  • Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point-defects of olivine. Phys Chem Miner 10:27–37

    Article  Google Scholar 

  • O’Neill HSC, Pownceby MI, McCammon CA (2003) The magnesiowustite: iron equilibrium and its implications for the activity-composition relations of (Mg, Fe)(2)SiO4 olivine solid solutions. Contrib Mineral Petrol 146:308–325

    Article  Google Scholar 

  • O’Neill HS (1987) Quartz–fayalite–iron and quartz–fayalite–magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72:67–75

    Google Scholar 

  • Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68:4179–4188

    Article  Google Scholar 

  • Pluschkell W, Engell HJ (1968) Ionen- und Elektronen leitung im Magnesiumorthosilikat. Ber Dtsch Keram Ges 45:388

    Google Scholar 

  • Sano J, Ganguly J, Hervig R, Dohmen R, Zhang XY (2011) Neodymium diffusion in orthopyroxene: experimental studies and applications to geological and planetary problems. Geochim Cosmochim Acta 75:4684–4698

  • Seifert S, O’Neill HSC (1987) Experimental determination of activity—composition relations in Ni2SiO4–Mg2SiO4 and Co2SiO4–Mg2SiO4 olivine solid solutions at 1200 K and 0.1 MPa and 1573 K and 0.5 GPa. Geochim Cosmochim Acta 51:97–104

    Article  Google Scholar 

  • Smyth DM, Stocker RL (1975) Point-defects and nonstoichiometry in forsterite. Phys Earth Planet Inter 10:183–192

    Article  Google Scholar 

  • Spandler C, O’Neill HS (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300A degrees C with some geochemical implications. Contrib Mineral Petrol 159:791–818

    Article  Google Scholar 

  • Spandler C, O’Neill HSC, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447:303–306

    Article  Google Scholar 

  • Stocker RL (1978a) Influence of oxygen-pressure on defect concentrations in olivine with a fixed cationic ratio. Phys Earth Planet Inter 17:118–129

    Article  Google Scholar 

  • Stocker RL (1978b) Point-defect formation parameters in olivine. Phys Earth Planet Inter 17:108–117

    Article  Google Scholar 

  • Stocker RL, Smyth DM (1978) Effect of enstatite activity and oxygen partial-pressure on point-defect chemistry of olivine. Phys Earth Planet Inter 16:145–156

    Article  Google Scholar 

  • Tsai T-L, Becker KD, Dieckmann R (2011) Point defects and orientation-dependent transport of matter and charge in iron-containing olivines. Solid State Ion 194:17–32

    Article  Google Scholar 

  • von Seckendorff V, O’Neill HSC (1993) An experimental study of Fe–Mg partitioning between olivine and orthopyroxene at 1,173, 1,273 and 1,423 K and 1.6 GPa. Contrib Mineral Petrol 113:196–207

    Article  Google Scholar 

  • Watson EB, Dohmen R (2010) Non-traditional and emerging methods for characterizing diffusion in minerals and mineral aggregates. Rev Mineral Geochem 72:61–105

    Article  Google Scholar 

  • Wiser NM, Wood BJ (1991) Experimental determination of activities in Fe–Mg olivine at 1,400 K. Contrib Mineral Petrol 108:146–153

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jiba Ganguly and an anonymous reviewer for their helpful reviews, Jon Blundy for his editorial handling and Sasha Stepanov for the valuable discussions. This work was supported by Australian Research Council Grant DPI094128 to H.O’.N. and I.H.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Zhukova.

Additional information

Communicated by Jon Blundy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, I., StC O’Neill, H., Cambell, I.H. et al. The effect of silica activity on the diffusion of Ni and Co in olivine. Contrib Mineral Petrol 168, 1029 (2014). https://doi.org/10.1007/s00410-014-1029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1029-z

Keywords

Navigation