Skip to main content
Log in

Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present new thermometers and barometers based on clinopyroxene–liquid equilibria specific to alkaline differentiated magmas. The new models were calibrated through the regression analyses of experimental datasets obtained by merging phase equilibria experiments from the literature with new experiments performed by using trachytic and phonolitic starting compositions. The regression strategy was twofold: (1) we have tested previous thermometric and barometric equations and recalibrated these models using the new datasets; (2) we have calibrated a new thermometer and a new barometer including only regression parameters that closely describe the compositional variability of the datasets. The new models yield more precise estimates than previous thermometers and barometers when used to predict temperatures and pressures of alkaline differentiated magmas. We have tested the reliability of the new equations by using clinopyroxene–liquid pairs from trachytes and phonolites erupted during major explosive eruptions at the Phlegrean Fields and Mt. Vesuvius (central Italy). The test yielded crystallization conditions comparable to those determined by means of melt and fluid inclusion analyses and phase equilibria studies; this validates the use of the proposed models for precise estimates of crystallization temperatures and pressures in differentiated alkaline magmas. Because these magmas feed some of the most voluminous, explosive, and threatening volcanic eruptions in the world, a better understanding of the environmental conditions of their reservoirs is mandatory and this is now possible with the new models provided here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andujar J, Scaillet B (2012) Experimental constraints on parameters controlling the difference in the eruptive dynamics of phonolitic magmas: the case of Tenerife (Canary Islands). J Petrol 53:1777–1806

    Article  Google Scholar 

  • Andujar J, Costa F, Martí J, Wolff JA, Carroll MR (2008) Experimental constraints on pre-eruptive conditions of phonolitic magma from the caldera-forming El Abrigo eruption, Tenerife (Canary Islands). Chem Geol 257:173–191

    Article  Google Scholar 

  • Andujar J, Costa A, Marti J (2010) Magma storage conditions of the last eruption of Teide volcano (Canary Islands, Spain). Bull Volcanol 72:381–395

    Article  Google Scholar 

  • Aulinas M, Civetta L, Di Vito MA, Orsi G, Gimeno D, Fernandez-Turiel JL (2008) The “Pomici di Mercato” Plinian eruption of Somma–Vesuvius: magma chamber processes and eruption dynamics. Bull Volcanol 70:825–840

    Article  Google Scholar 

  • Balcone-Boissard H, Villemant B, Boudon G, Michel A (2008) Non-volatile vs volatile behaviours of halogens during the AD 79 plinian eruption of Mt. Vesuvius, Italy. Earth Planet Sci Lett 269:66–79

    Article  Google Scholar 

  • Balcone-Boissard H, Boudon G, Ucciani G, Villemant B, Cioni R, Civetta L, Orsi G (2012) Magma degassing and eruption dynamics of the Avellino pumice Plinian eruption of Somma–Vesuvius (Italy). Comparison with the Pompeii eruption. Earth Planet Sci Lett 331–332:257–268

    Article  Google Scholar 

  • Belkin HE, De Vivo B (1993) Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Somma–Vesuvius. J Volcanol Geotherm Res 58:98–100

    Google Scholar 

  • Belkin HE, De Vivo B, Roedder E, Cortini M (1985) Fluid inclusion geobarometry from ejected Mt. Somma–Vesuvius nodules. Am Mineral 70:288–303

    Google Scholar 

  • Belkin HE, De Vivo B, Torok K, Webster JD (1998) Pre-eruptive volatile content, melt-inclusion chemistry, and microthermometry of interplinian Vesuvius lavas (pre-A.D. 1631). J Volcanol Geotherm Res 82:79–95

    Article  Google Scholar 

  • Berndt J, Holtz F, Koepke J (2001) Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. Contrib Min Petrol 140:469–486

    Article  Google Scholar 

  • Cioni R (2000) Volatile content and degassing processes in the A.D. 79 magma chamber at Vesuvius (Italy). Contrib Mineral Petrol 140:40–54

    Article  Google Scholar 

  • Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Compositional layering and syn-eruptive mixing of periodically refilled shallow magma chamber: the A.D. 79 Plinian eruption of Vesuvius. J Petrol 36:739–776

    Article  Google Scholar 

  • Cioni R, Marianelli P, Santacroce R (1998) Thermal and compositional evolution of the shallow magma chambers of Vesuvius, evidence from pyroxene phenocrysts and melt inclusions. J Geophys Res 103:18277–18290

    Article  Google Scholar 

  • Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res 108(B2). doi:10.1029/2001JB000642

  • Civetta L, Santacroce R (1992) Steady state magma supply in the last 3400 years of Vesuvius activity. Acta Vulcanol 2:147–159

    Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics depositional processes—the Campanian Ignimbrite, Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Conte AM, Dolfi D, Gaeta M, Misiti V, Mollo S, Perinelli C (2009) Experimental constraints on evolution of leucite–basanite magma at 1 and 10–4 GPa: implications for parental compositions of Roman high-potassium magmas. Eur J Min 214:763–782

    Article  Google Scholar 

  • Cortini M, Lima A, De Vivo B (1985) Trapping temperatures of melt inclusions from ejected vesuvian mafic xenoliths. J Volcanol Geotherm Res 26:167–172

    Article  Google Scholar 

  • D’Antonio M (2011) Lithology of the basement underlying the Campi Flegrei caldera: volcanological and petrological constraints. J Volcanol Geotherm Res 200:91–98

    Article  Google Scholar 

  • De Astis G, La Volpe L, Peccerillo A, Civetta L (1997) Volcanological and petrological evolution of Vulcano Island (Aeolian Arc, southern Tyrrhenian Sea). J Geophys Res 102:8021–8050

    Article  Google Scholar 

  • Del Gaudio P, Mollo S, Ventura G, Iezzi G, Taddeucci I, Cavallo A (2010) Cooling rate-induced differentiation in anhydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes. Chem Geol 270:164–178

    Article  Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Min 80:319–328

    Google Scholar 

  • Esposti Ongaro T, Papale P, Neri A, Del Seppia D (2006) Influence of carbon dioxide on the large-scale dynamics of magmatic eruptions at Phlegrean Fields (Italy). Geophys Res Lett 33:L06318

    Article  Google Scholar 

  • Fabbrizio A, Carroll MR (2008) Experimental constraints on the differentiation process and pre-eruptive conditions in the magmatic system of Phlegrean fields (Naples, Italy). J Volcanol Geotherm Res 171:88–102

    Article  Google Scholar 

  • Fedele L, Zanetti A, Morra V, Lustrino M, Melluso L, Vannucci R (2009) Clinopyroxene/liquid trace element partitioning in natural trachyte–trachyphonolite systems: insights from Campi Flegrei (southern Italy). Contrib Mineral Petrol 158:337–356

    Article  Google Scholar 

  • Fontijn K, Ernst GGJ, Elburg MA, Williamson D, Abdallah E, Kwelwa S, Mbede E, Jacobs P (2010) Holocene explosive eruptions in the Rungwe Volcanic Province, Tanzania. J Volcanol Geotherm Res 196:91–110

    Article  Google Scholar 

  • Fowler SJ, Spera F, Bohrson W, Belkin HE, De Vivo B (2007) Phase equilibria constraints on the chemical and physical evolution of the Campanian Ignimbrite. J Petrol 48:459–493

    Article  Google Scholar 

  • Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120

    Article  Google Scholar 

  • Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2008) Magma–carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101:397–415

    Article  Google Scholar 

  • Fulignati P, Marianelli P, Proto M, Sbrana A (2004) Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy). J Volcanol Geotherm Res 133:141–155

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Jefferys WH, Berger JO (1992) Ockham’s razor and Bayesian analysis. Am J Sci 80:64–72

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Marianelli P, Métrich N, Sbrana A (1999) Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bull Volcanol 61:48–63

    Article  Google Scholar 

  • Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34:937–940

    Article  Google Scholar 

  • Masotta M, Gaeta M, Gozzi F, Marra F, Palladino DM, Sottili G (2010) H2O- and temperature-zoning in magma chambers: the example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos 118:119–130

    Article  Google Scholar 

  • Masotta M, Freda C, Gaeta M (2012a) Origin of crystal-poor, differentiated magmas: insights from thermal gradient experiments. Contrib Min Petrol 163:49–65

    Article  Google Scholar 

  • Masotta M, Freda C, Paul TA, Moore GM, Gaeta M, Scarlato P, Troll V (2012b) Low pressure experiments in piston cylinder apparatus: calibration of newly designed 25 mm furnace assemblies to P = 150 MPa. Chem Geol 312–313:74–79

    Article  Google Scholar 

  • Mollo S, Gaeta M, Freda C, Di Rocco T, Misiti V, Scarlato P (2010a) Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114:503–514

    Article  Google Scholar 

  • Mollo S, Del Gaudio P, Ventura G, Iezzi G, Scarlato P (2010b) Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118:302–312

    Article  Google Scholar 

  • Mollo S, Lanzafame G, Masotta M, Iezzi G, Ferlito C, Scarlato P (2011) Cooling history of a dike as revealed by mineral chemistry: a case study from Mt. Etna volcano. Chem Geol 283:261–273

    Article  Google Scholar 

  • Mollo S, Misiti V, Scarlato P, Soligo M (2012) The role of cooling rate in the origin of high temperature phases at the chilled margin of magmatic intrusions. Chem Geol 322–323:28–46

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Scarlato P (2013a) The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib Mineral Petrol 165:457–475

    Article  Google Scholar 

  • Mollo S, Putirka K, Misiti V, Soligo M, Scarlato P (2013b) A new test for equilibrium based on clinopyroxene-melt pairs: clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol. doi:10.1016/j.chemgeo.2013.05.026

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystals-structure modeling. Contrib Mineral Petrol 121:115–125

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part 1 Calibration and testing of a Cr-in-cpx barometer and an enstatite-in-cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks. Part 1: an expanded structural geobarometer for anhydrous and hydrous basic and ultrabasic systems. Contrib Mineral Petrol 133:122–135

    Article  Google Scholar 

  • Orsi G, Civetta L, Del Gaudio C, de Vita S, Di Vito RA, Isaia R, Petrazzuoli SM, Ricciardi GP, Ricco C (1999) Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–451

    Article  Google Scholar 

  • Pabst S, Wörner G, Civetta L, Tesoro R (2008) Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Phlegrean Fields, Italy). Bull Volcanol 70:961–976

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Putirka K (1999) Clinopyroxene + liquid equilibrium to 100 kbar and 2450 K. Contrib Mineral Petrol 135:151–163

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putirka K, Tepley F (eds) Minerals, inclusions and volcanic processes, vol 69, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, VA, USA, pp 61–120

  • Putirka K, Johnson M, Kinzler R, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123:92–108

    Article  Google Scholar 

  • Putirka K, Ryerson FJ, Mikaelian H (2003) New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene + liquid equilibria. Am Min 88:1542–1554

    Google Scholar 

  • Ratkowsky DA (1990) Handbook of non-linear regression models. Marcel Decker Inc., New York

    Google Scholar 

  • Scaillet B, Pichavant M, Cioni R (2008) Upward migration of Vesuvius magma chamber over the past 20,000 years. Nature 455:216–219

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220

    Article  Google Scholar 

  • Todesco M, Neri A, Esposti Ongaro T, Papale P, Rosi M (2006) Pyroclastic flow dynamics and hazard in a caldera setting: application to Phlegrean fields (Italy). Geochem Geophys Geosyst 7:1525–2027

    Article  Google Scholar 

  • White JC, Espejel-Garcia VV, Anthony EY, Omenda PA (2012) Open system evolution of peralkaline trachyte and phonolite from the Suswa volcano, Kenya rift. Lithos 152:84–104

    Article  Google Scholar 

  • Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P, Chiarabba C, de Franco R, Makris J, Nichelini A, Musacchio G (2003) Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophys Res Lett 30(19):SDE10.1–SDE10.4

    Google Scholar 

Download references

Acknowledgments

We are grateful to Keith D. Putirka, an anonymous reviewer, and the editor Timothy L. Grove for their useful comments. Tracy Paul is acknowledged for providing experimental materials and technical support during the experimental work. Bob Myhill is acknowledged for thoughtful input to this manuscript. A. Cavallo is acknowledged for assistance during electron microprobe analysis. This work was funded by Sapienza—Università di Roma, Istituto Nazionale di Geofisica e Vulcanologia, and Depths of the Earth Company. SM was supported by ERC Starting Grant 259256 GLASS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Masotta.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 866 kb)

Supplementary material 2 (XLSX 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masotta, M., Mollo, S., Freda, C. et al. Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contrib Mineral Petrol 166, 1545–1561 (2013). https://doi.org/10.1007/s00410-013-0927-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0927-9

Keywords

Navigation