Skip to main content
Log in

Clinopyroxene/liquid trace element partitioning in natural trachyte–trachyphonolite systems: insights from Campi Flegrei (southern Italy)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Trace element partition coefficients between clinopyroxenes and associated glassy matrix (Cpx/L D) have been determined for 13 REE, HFSE4+,5+, U, Th, Sr, Pb, Sc and V from combined LA-ICP-MS/EMP analyses in selected trachytes and trachyphonolites from Campi Flegrei. Composition of clinopyroxene and glass is pretty homogeneous in the trachyphonolites, pointing to an overall attainment of the equilibrium conditions. In trachytes, conversely, phases show some compositional heterogeneity (due to the presence of clinopyroxene xenocrysts) that requested a more careful petrographic and geochemical inspection of the samples to assess the equilibrium clinopyroxene composition. In the trachyte clinopyroxenes, REE are compatible from Nd to Lu (Cpx/L D up to 2.9), like Y, Ti, Sc and V. The Cpx/L D for Eu is lower than those of the adjacent REE, highlighting Eu2+ contribution. High D values are also shown by U, Th, Pb, Zr, Hf, Nb and Ta relatively to basaltic and andesitic systems, whereas the D Sr is roughly similar to that found for less evolved magmas. Trachyphonolites are characterized by an overall decrease of the Cpx/L D for highly-charged cations (with the exception of V), and by a slight increase of D Sr. REE are still compatible from Nd to Lu (Cpx/L D up to 2.1), like Ti, Y, Sc and V. This variation is also predicted for REE and Y by models based on the elastic strain theory, being consistent with the slightly lower polymerization degree estimated for the trachyphonolites. However, the observed Cpx/L D (REE,Y) are matched by the modelled ones only considering very low T (≤825°C), which are believed unlikely. This mismatch cannot be attributed to effects induced by the water-rich composition of the trachyte–trachyphonolite suite, since they would lower the observed Cpx/L D (REE,Y). Moreover, the anomalous inflections of measured Cpx/L D for HREE suggests some crystal-chemical control, such as the entrance of these elements in a site distinct from M2. It is concluded that the large Cpx/L D determined for trachytes and trachyphonolites are likely induced by hitherto unconstrained changes of the Z3+ activities related to the composition of melt and/or solid. All these considerations strongly highlight the importance of a direct characterization of trace element partitioning in natural samples from magmatic systems poorly characterized by experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam J, Green T (2003) The influence of pressure, mineral composition and water on trace element partitioning between clinopyroxene, amphibole and basanitic melts. Eur J Mineral 15:831–841. doi:10.1127/0935-1221/2003/0015-0831

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214. doi:10.1016/0016-7037(89)90286-X

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mt. Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256. doi:10.1007/BF00402114

    Article  Google Scholar 

  • Beattie P (1993a) The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies. Earth Planet Sci Lett 117:379–391. doi:10.1016/0012-821X(93)90091-M

    Article  Google Scholar 

  • Beattie P (1993b) Uranium–thorium disequilibria and partitioning on melting of garnet peridotite. Nature 363:63–65. doi:10.1038/363063a0

    Article  Google Scholar 

  • Beccaluva L, Di Girolamo P, Morra V, Siena F (1990) Phlegraean Fields volcanism revisited: a critical re-examination of deep eruptive systems and magma evolutionary processes. Neues Jahrb Geol Palaontol Mh 5:257–271

    Google Scholar 

  • Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26:191–221. doi:10.1016/0024-4937(91)90029-K

    Article  Google Scholar 

  • Bédard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717–3742

    Article  Google Scholar 

  • Bennett SL, Blundy J, Elliott T (2004) The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochim Cosmochim Acta 68:2335–2347. doi:10.1016/j.gca.2003.11.006

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372:452–454. doi:10.1038/372452a0

    Article  Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397. doi:10.1016/S0012-821X(03)00129-8

    Article  Google Scholar 

  • Bottazzi P, Tiepolo M, Vannucci R, Zanetti A, Brumm R, Foley SF, Oberti R (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE. Contrib Mineral Petrol 137:36–45. doi:10.1007/s004100050580

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253. doi:10.1016/0022-0248(75)90241-9

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219. doi:10.1016/S0377-0273(96)00027-3

    Article  Google Scholar 

  • Conticelli S (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chem Geol 149:51–81. doi:10.1016/S0009-2541(98)00038-2

    Article  Google Scholar 

  • D’Antonio M, Di Girolamo P (1994) Petrological and geochemical study of mafic shoshonitic volcanics from Procida-Vivara and Ventotene Islands. Acta Vulcanol 5:69–80

    Google Scholar 

  • Dallai L, Freda C, Gaeta M (2004) Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral Petrol 148:247–263. doi:10.1007/s00410-004-0602-2

    Article  Google Scholar 

  • De La Roche H, Leterrier P, Grandclaude P, Marchal E (1980) A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses. Its relationships with current nomenclature. Chem Geol 29:183–210. doi:10.1016/0009-2541(80)90020-0

    Article  Google Scholar 

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Mineral Petrol 73:47–65. doi:10.1007/s007100170010

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera–Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170. doi:10.1016/S0377-0273(03)00396-2

    Article  Google Scholar 

  • Di Girolamo P, Melluso L, Morra V (1991) Magmatic activity northeast of Roccamonfina volcano (Southern Italy): petrology, geochemistry and relationships with campanian volcanics. Neues Jahrb Miner Abh 163:271–289

    Google Scholar 

  • Di Girolamo P, Melluso L, Morra V, Secchi FAG (1995) Evidence of interaction between mafic and differentiated magmas in the youngest phase of activity at Ischia island (Italy). Per Mineral 64:393–411

    Google Scholar 

  • D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 67:601–621. doi:10.1007/s00445-004-0397-z

    Article  Google Scholar 

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75:544–559

    Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284. doi:10.1016/0009-2541(94)90131-7

    Article  Google Scholar 

  • Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G (2008) The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70:1189–1219. doi:10.1007/s00445-008-0197-y

    Article  Google Scholar 

  • Foley SF, Petibon CM, Jenner GA, Kjarsgaard BA (2001) High U/Th partitioning by clinopyroxene from alkali silicate and carbonatite metasomatism: an origin for Th/U disequilibrium in mantle melts? Terra Nova 13:104–109. doi:10.1046/j.1365-3121.2001.00323.x

    Article  Google Scholar 

  • Forsythe LM, Nielsen RL, Fisk MR (1994) High field-strength element partitioning between pyroxene and basaltic to dacitic magmas. Chem Geol 117:107–125. doi:10.1016/0009-2541(94)90124-4

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modelling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Fulignati P, Marianelli M, Proto M, Sbrana A (2004) Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy). J Volcanol Geotherm Res 133:141–155. doi:10.1016/S0377-0273(03)00395-0

    Article  Google Scholar 

  • Gaeta M, Freda C, Christensen JN, Dallai L, Marra F, Karner DB, Scarlato P (2006) Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): clues to the source an the evolution of ultrapotassic magmas. Lithos 86:330–346. doi:10.1016/j.lithos.2005.05.010

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt: crystal-chemical controls. Geochim Cosmochim Acta 59:1951–1962. doi:10.1016/0016-7037(95)00119-0

    Article  Google Scholar 

  • Green TH, Pearson NJ (1985) Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochim Cosmochim Acta 49:1465–1468. doi:10.1016/0016-7037(85)90295-9

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lihos 53:165–187

    Google Scholar 

  • Grove TL, Bryan WB (1983) Fractionation of pyroxene–phiric MORB at low-pressure: an experimental study. Contrib Mineral Petrol 84:293–309. doi:10.1007/BF01160283

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8. doi:10.1007/BF00320827

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166. doi:10.1016/0009-2541(94)90126-0

    Article  Google Scholar 

  • Hazen RM, Finger LW (1979) Bulk modulus–volume relationship for cation-anion polyhedra. J Geophys Res 84:6723–6728. doi:10.1029/JB084iB12p06723

    Article  Google Scholar 

  • Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215. doi:10.1016/S0024-4937(00)00025-6

    Article  Google Scholar 

  • Huang F, Lundstrom CC, McDonough WF (2006) Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. Am Mineral 91:1385–1400. doi:10.2138/am.2006.1909

    Article  Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221. doi:10.1016/0016-7037(84)90056-5

    Article  Google Scholar 

  • Klein M, Stosch H-G, Seck HA, Shimizu N (2000) Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochim Cosmochim Acta 64:99–115. doi:10.1016/S0016-7037(99)00178-7

    Article  Google Scholar 

  • Lemarchand F, Villemant B, Calas G (1987) Trace element distribution coefficients in alkaline series. Geochim Cosmochim Acta 51:1071–1081. doi:10.1016/0016-7037(87)90201-8

    Article  Google Scholar 

  • Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL, Gill JB, Williams Q (1994) Compositional controls on the partitioning of U, Th, Ba, Pb, Sr, and Zr between clinopyroxene and haplobasaltic melts: implications for uranium series disequilibria in basalts. Earth Planet Sci Lett 128:407–423. doi:10.1016/0012-821X(94)90159-7

    Article  Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30. doi:10.1016/0016-7037(83)90087-X

    Article  Google Scholar 

  • Mahood GA, Stimac JA (1990) Trace-element partitioning in pantellerites and trachytes. Geochim Cosmochim Acta 54:2257–2276. doi:10.1016/0016-7037(90)90050-U

    Article  Google Scholar 

  • Melluso L, Morra V, Perrotta A, Scarpati C, Adabbo M (1995) The eruption of The Breccia Museo (Campi Flegrei, Italy): fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics. J Volcanol Geotherm Res 68:325–339. doi:10.1016/0377-0273(95)00020-5

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam

    Google Scholar 

  • Nagasawa H (1973) Rare-earth distribution in alkali rocks from Oki-Dogo Island, Japan. Contrib Mineral Petrol 39:301–308. doi:10.1007/BF00376470

    Article  Google Scholar 

  • Nagasawa H, Schnetzler CC (1971) Partitioning of rare earth, alkali and alkaline earth elements between phenocrysts and acidic igneous magma. Geochim Cosmochim Acta 35:953–968. doi:10.1016/0016-7037(71)90008-1

    Article  Google Scholar 

  • Nekvasil H, Burnham CW (1987) The calculated individual effects of pressure and water content on phase equilibria in the granite system. In: Mysen BO (ed) Magmatic processes: physicochemical principles. Geochemical Society, University Park, Pennsylvania, p 500

    Google Scholar 

  • Nicholls IA, Harris KL (1980) Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta 44:287–308. doi:10.1016/0016-7037(80)90138-6

    Article  Google Scholar 

  • O’Neill HSC, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181. doi:10.1016/S0009-2541(01)00414-4

    Article  Google Scholar 

  • Olin PH, Wolff JA (2007) HREE enrichment in iron-rich pyroxenes from felsic liquids. AGU abstract, V33C-1528

  • Pappalardo L, Civetta L, D’Antonio M, Deino A, Di Vito M, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and Sr-isotopic evolution of the Phlegrean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J Volcanol Geotherm Res 91:141–166. doi:10.1016/S0377-0273(99)00033-5

    Article  Google Scholar 

  • Pappalardo L, Civetta L, de Vita S, Di Vito M, Orsi G, Carandente A, Fisher RV (2002) Timing of magma extraction during the Campanian Ignimbrite eruption (Campi Flegrei Caldera). J Volcanol Geotherm Res 114:479–497. doi:10.1016/S0377-0273(01)00302-X

    Article  Google Scholar 

  • Pappalardo L, Ottolini L, Mastrolorenzo G (2008) The Campanian Ignimbrite (southern Italy), geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib Mineral Petrol 156:1–26. doi:10.1007/s00410-007-0270-0

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1996) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144. doi:10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Peccerillo A (2005) Plio–Quaternary volcanism in Italy: petrology, geochemistry, geodynamics. Springer, Berlin

    Google Scholar 

  • Perrotta A, Scarpati C (1994) The dynamics of the Breccia Museo Eruption (Campi Flegrei Italy) and the significance of spatter clasts associated with lithic breccias. J Volcanol Geotherm Res 59:335–355. doi:10.1016/0377-0273(94)90086-8

    Article  Google Scholar 

  • Perrotta A, Scarpati C, Luongo G, Morra V (2006) The Campi Flegrei caldera boundary in the city of Naples. In: De Vivo B (ed) Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Elsevier, in the series Developments in Volcanology, pp 85–96

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene–liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554

    Google Scholar 

  • Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II. Geochim Cosmochim Acta 34:331–340. doi:10.1016/0016-7037(70)90110-9

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Romano C, Carroll MR (2001) Volatile element zonation in Campanian Ignimbrite magmas (Phlegrean Fields, Italy): evidence from the study of glass inclusions and matrix glasses. Contrib Mineral Petrol 140:543–553

    Google Scholar 

  • Sisson TW (1991) Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim Cosmochim Acta 55:1575–1585. doi:10.1016/0016-7037(91)90129-S

    Article  Google Scholar 

  • Skulski T, Minarik W, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117:127–147. doi:10.1016/0009-2541(94)90125-2

    Article  Google Scholar 

  • Tiepolo M, Bottazzi P, Palenzona M, Vannucci R (2002) A laser probe coupled with ICP–double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon. Can Mineral 41:259–272. doi:10.2113/gscanmin.41.2.259

    Article  Google Scholar 

  • Vannucci R, Bottazzi P, Wulff-Pedersen E, Neumann E-R (1998) Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents. Earth Planet Sci Lett 158:39–51. doi:10.1016/S0012-821X(98)00040-5

    Article  Google Scholar 

  • Viccaro M, Ferlito C, Cristofolini R (2007) Amphibole crystallization in the Etnean feeding system: mineral chemistry and trace element partitioning between Mg–hastingsite and alkali basaltic melt. Eur J Mineral 19:499–511. doi:10.1127/0935-1221/2007/0019-1747

    Article  Google Scholar 

  • Villemant B (1988) Trace element evolution in Phlegreaen Fields (central Italy): fractional crystallization and selective enrichment. Contrib Mineral Petrol 98:169–183. doi:10.1007/BF00402110

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181. doi:10.1007/s004100050330

    Article  Google Scholar 

  • Wood B, Blundy JD (2001) The effect of cation charge on crystal–melt partitioning of trace elements. Earth Planet Sci Lett 188:59–71. doi:10.1016/S0012-821X(01)00294-1

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2002) The effect of H2O on crystal–melt partitioning of trace elements. Geochim Cosmochim Acta 66:3647–3656. doi:10.1016/S0016-7037(02)00935-3

    Article  Google Scholar 

  • Wörner G, Beusen J-M, Duchateau N, Gijbels R, Schmincke H-U (1983) Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See volcano (Germany). Contrib Mineral Petrol 84:152–173. doi:10.1007/BF00371282

    Article  Google Scholar 

  • Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75:39–54. doi:10.1016/j.lithos.2003.12.022

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Marcello Serracino (CNR, Rome) for skilled help and assistance during EMP analyses. The review of Eddy Hill highly improved an early version of the manuscript. The present version greatly benefited from the constructive criticism of two anonymous reviewers and comments and suggestions by the Editor Tim Grove. Their contribution was greatly appreciated. This work benefited of LR. N.5 grants to V. Morra and MIUR funds to L. Melluso (PRIN 2003) and V. Morra (2008HMHYFP_003 PRIN 2008). CNR-IGG funding and its instrumentation facilities at Pavia are also greatly acknowledged. L.F. gives a very special thanks to Eng. Jarosław Maślany and NeAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Fedele.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Appendix (XLS 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedele, L., Zanetti, A., Morra, V. et al. Clinopyroxene/liquid trace element partitioning in natural trachyte–trachyphonolite systems: insights from Campi Flegrei (southern Italy). Contrib Mineral Petrol 158, 337–356 (2009). https://doi.org/10.1007/s00410-009-0386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0386-5

Keywords

Navigation