Skip to main content

Advertisement

Log in

Phase relations and liquid lines of descent of an iron-rich peralkaline phonolitic melt: an experimental study

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We experimentally investigated the phase relations of a peralkaline phonolitic dyke rock associated with the Ilímaussaq plutonic complex (South Greenland). The extremely evolved and iron-rich composition (magnesium number = 2, alkalinity index = 1.44, FeO* = 12 wt%) may represent the parental magma of the Ilímaussaq complex. This dyke rock is therefore perfectly suited for performing phase-equilibrium experiments, since in contrast to the plutonic rocks of the complex, no major cumulate formation processes complicate defining a reasonable starting composition. Experiments were carried out in hydrothermal rapid-quench cold-seal pressure vessels at P = 100 MPa and T = 950–750 °C. H2O contents ranging from anhydrous to H2O saturated (~5 wt% H2O) and varying fO2 (~ΔlogFMQ −3 to +1; where FMQ represents the fayalite–magnetite–quartz oxygen buffer) were applied. Reduced and dry conditions lead to substantial crystallization of alkali feldspar, nepheline, hedenbergite-rich clinopyroxene, fayalite-rich olivine and minor amounts of ulvøspinel-rich magnetite, which represent the phenocryst assemblage of the natural dyke rock. Oxidized and H2O-rich conditions, however, suppress the crystallization of olivine in favor of magnetite and clinopyroxene with less or no alkali feldspar and nepheline formation. Accordingly, combined low fO2 and aH2O force the evolution of the residual melt toward decreasing SiO2, increasing FeO* and alkalinity index (up to 3.55). On the contrary, high fO2 and aH2O produce residual melts with relatively low FeO*, high SiO2 and a relatively constant alkalinity index. We show that variations of aH2O and fO2 lead to contrasting trends regarding the liquid lines of descent of iron-rich silica-undersaturated peralkaline compositions. Moreover, the increase in FeO* and alkalinity index (reduced and dry conditions) in the residual melt is an important prerequisite to stabilize late-magmatic minerals of the dyke rock, for example, aenigmatite (Na2Fe5TiSi6O20), coexisting with the most evolved melts at 750 °C. Contrary to what might be expected, experiments with high aH2O and interlinked high fO2 exhibit higher liquidus T’s compared with experiments performed at low aH2O and fO2 for experiments where magnetite is liquidus phase. This is because ulvøspinel-poor magnetite crystallizes at higher fO2 and has a higher melting point than ulvøspinel-rich magnetite, which is favored at lower fO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Ackermann S, Kunz M, Armbruster T, Schefer J, Hänni H (2004) Cation distribution in a Fe-bearing K-feldspar from Itrongay, Madagascar: a combined neutron- and X-ray single-crystal diffraction study. Schweizer Mineralogische und Petrographische Mitteilungen 84:345–354. doi:10.5169/seals-63754

    Google Scholar 

  • Allaart JH (1969) The chronology and petrography of the Gardar dykes between Igaliko Fjord and Redekammen, South Greenland. Rapp Grønl Geol Unders 25:20

    Google Scholar 

  • Allman R, Koritnig S (1974) Fluorine. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin

    Google Scholar 

  • Almeev RR, Holtz F, Koepke J, Parat F, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Mineral 92:670–674. doi:10.2138/am.2007.2484

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF—a PASCAL program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine and quartz. Comput Geosci 19:1333–1350. doi:10.1016/0098-3004(93)90033-2

    Article  Google Scholar 

  • Andújar J, Costa F, Marti J, Wolff JA, Carroll MR (2008) Experimental constraints on pre-eruptive conditions of phonolitic magma from the caldera-forming El Abrigo eruption, Tenerife (Canary Islands). Chem Geol 257:173–191. doi:10.1016/j.chemgeo.2008.08.012

    Article  Google Scholar 

  • Aranovich LY, Newton RC (1996) H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite–periclase equilibrium. Contrib Miner Petrol 125:200–212. doi:10.1007/s004100050216

    Article  Google Scholar 

  • Bailey DK, Schairer JF (1966) The system Na2O-Al2O3-Fe2O3-SiO2 at 1 atmosphere, and the petrogenesis of alkaline rocks. J Petrol 7:114–170. doi:10.1093/petrology/7.1.114

    Article  Google Scholar 

  • Bailey JC, Gwozdz R, Rose-Hansen J, Sørensen H (2001) Geochemical overview of the Ilimaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:35–53

    Google Scholar 

  • Behrens H (1995) Determination of water solubilities in high-viscosity silicate glasses. An experimental study on NaAlSi3O8 and KAlSi3O8 melts. Eur J Mineral 7:905–920

    Google Scholar 

  • Berndt J, Holtz F, Koepke J (2001) Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. Contrib Miner Petrol 140:469–486. doi:10.1007/PL00007674

    Article  Google Scholar 

  • Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87:1717–1726

    Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167. doi:10.1093/petrology/egh066

    Article  Google Scholar 

  • Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt—implications for the Skaergaard intrusion and Columbia river flood basalts. J Petrol 49:1687–1727. doi:10.1093/petrology/egn043

    Article  Google Scholar 

  • Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, Princeton

    Google Scholar 

  • Burnham CW (1979) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks: fiftieth anniversary perspectives. Princeton University Press, Princeton, pp 439–482

    Google Scholar 

  • Carroll MR, Blank JG (1997) The solubility of H2O in phonolitic melts. Am Mineral 82:549–556

    Google Scholar 

  • Carroll MJ, Webster J (1994) Volatiles in magmas: solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. In: Carroll MR, Holloway JR (eds) Reviews in mineralogy, vol 30. Mineralogical Society of America, pp 231–271

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Prentice Hall, Harlow, England

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328

    Google Scholar 

  • Di Carlo I, Rotolo SG, Scaillet B, Buccheri V, Pichavant M (2010) Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy. J Petrol 51:2245–2276. doi:10.1093/petrology/egq055

    Article  Google Scholar 

  • Dickenson MP, Hess PC (1986) The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts. Contrib Miner Petrol 92:207–217. doi:10.1007/BF00375294

    Article  Google Scholar 

  • Edgar AD, Parker LM (1974) Comparison of melting relationships of some plutonic and volcanic undersaturated alkaline rocks. Lithos 7:263–273. doi:10.1016/0024-4937(74)90047-4

    Article  Google Scholar 

  • Ernst WG (1962) Synthesis, stability relations, and occurrence of riebeckite and riebeckite–arfvedsonite solid-solutions. J Geol 70:689–736

    Google Scholar 

  • Evans BW, Scaillet B (1997) The redox state of Pinatubo dacite and the ilmenite–hematite solvus. Am Mineral 82:625–629

    Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Miner Petrol 152:611–638. doi:10.1007/s00410-006-0123-2

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Miner Petrol 160:551–568. doi:10.1007/s00410-010-0493-3

    Article  Google Scholar 

  • Fenner CN (1929) The crystallization of basalts. Am J Sci 18:225–253. doi:10.2475/ajs.s5-18.105.225

    Article  Google Scholar 

  • Ford CE (1978) Platinum-iron alloy sample containers for melting experiments on iron-bearing rocks, minerals, and related systems. Mineral Mag 42:271–275

    Article  Google Scholar 

  • Freise M, Holtz F, Koepke J, Scoates J, Leyrit H (2003) Experimental constraints on the storage conditions of phonolites from the Kerguelen archipelago. Contrib Miner Petrol 145:659–672. doi:10.1007/s00410-003-0453-2

    Article  Google Scholar 

  • Freise M, Holtz F, Nowak M, Scoates JS, Strauss H (2009) Differentiation and crystallization conditions of basalts from the Kerguelen large igneous province: an experimental study. Contrib Miner Petrol 158:505–527. doi:10.1007/s00410-009-0394-5

    Article  Google Scholar 

  • French BM (1966) Some geological implications of equilibrium between graphite and a C–H–O gas phase at high temperatures and pressures. Rev Geophys 4:223–253. doi:10.1029/RG004i002p00223

    Article  Google Scholar 

  • French BM, Eugster HP (1965) Experimental control of oxygen fugacities by graphite-gas equilibriums. J Geophys Res 70:1529–1539. doi:10.1029/JZ070i006p01529

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Pichavant H, Bény JM (2001) The effect of water and fO2 on the ferric–ferrous ratio of silicic melts. Chem Geol 174:255–273. doi:10.1016/S0009-2541(00)00319-3

    Article  Google Scholar 

  • Giuli G, Alonso-Mori R, Cicconi MR, Paris E, Glatzel P, Eeckhout SG, Scaillet B (2012) Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses. Am Mineral 97:468–475. doi:10.2138/am.2012.3888

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Miner Petrol 15:103–190. doi:10.1007/bf00372052

    Article  Google Scholar 

  • Hamilton DL, Burnham CW, Osborn EF (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in Mafic Magmas. J Petrol 5:21–39. doi:10.1093/petrology/5.1.21

    Article  Google Scholar 

  • Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Miner Petrol 145:492–501. doi:10.1007/s00410-003-0464-z

    Article  Google Scholar 

  • Holloway JR, Pan V, Gudmundsson G (1992) High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur J Mineral 4:105–114

    Google Scholar 

  • Holtz F, Behrens H, Dingwell DB, Johannes W (1995) H2O solubility in haplogranitic melts—compositional, pressure, and temperature-dependence. Am Mineral 80:94–108

    Google Scholar 

  • Huizenga JM (2001) Thermodynamic modelling of C–O–H fluids. Lithos 55:101–114. doi:10.1016/S0024-4937(00)00040-2

    Article  Google Scholar 

  • Husen A, Almeev RR, Koepke J, Holtz F (2012) Conducting absolutely H2O-free high pressure experiments: method and implications to Shatsky Rise Oceanic Plateau Basalts. In: Experimental mineralogy petrology geochemistry. Kiel, Germany, p 78

  • Jakobsson S, Oskarsson N (1994) The system C–O in equilibrium with graphite at high pressure and temperature: an experimental study. Geochim Cosmochim Acta 58:9–17. doi:10.1016/0016-7037(94)90442-1

    Article  Google Scholar 

  • Kesson SE, Lindsley DH (1976) Mare basalt petrogenesis—a review of experimental studies. Rev Geophys 14:361–373. doi:10.1029/RG014i003p00361

    Article  Google Scholar 

  • Kloess G (2000) Dichtefluktuationen natürlicher Gläser, Habil Thesis. Universität Jena

  • Kogarko LN, Romanchev BP (1977) Temperature, pressure, redox conditions, and mineral equilibria in agpaitic nepheline syenites and apatite-nepheline rocks. Geochem Int 14:113–128

    Google Scholar 

  • Konnerup-Madsen J (2001) A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex. South Greenl Geol Greenl Surv Bull 190:159–166

    Google Scholar 

  • Konnerup-Madsen J, Rose-Hansen J (1984) Composition and significance of fluid inclusions in the Ilímaussaq peralkaline granite, South Greenland. Bulletin de Mineralogie 107:317–326

    Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108:82–92. doi:10.1007/BF00307328

    Article  Google Scholar 

  • Krumrei TV, Pernicka E, Kaliwoda M, Markl G (2007) Volatiles in a peralkaline system: abiogenic hydrocarbons and F–Cl–Br systematics in the naujaite of the Ilímaussaq intrusion, South Greenland. Lithos 95:298–314. doi:10.1016/j.lithos.2006.08.003

    Article  Google Scholar 

  • Kunzmann T (1999) The aenigmatite–rhönite mineral group. Eur J Mineral 11:743–756

    Google Scholar 

  • Larsen LM (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilímaussaq intrusion, South Greenland. J Petrol 17:258–290. doi:10.1093/petrology/17.2.258

    Article  Google Scholar 

  • Larsen LM, Sørensen H (1987) The Ilímaussaq intrusion—progressive crystallization and formation of layering in an agpaitic magma. Geol Soc Lond Special Publ 30:473–488. doi:10.1144/GSL.SP.1987.030.01.23

    Article  Google Scholar 

  • Larsen LM, Steenfelt A (1974) Alkali loss and retention in an iron-rich peralkaline phonolite dyke from the Gardar province, south Greenland. Lithos 7:81–90. doi:10.1016/0024-4937(74)90021-8

    Article  Google Scholar 

  • Le Bas MJ, Maitre RWL, Streckeisen A, Zanettin B, IUGS Subcommission on the Systematics of Igneous Rocks (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750. doi:10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Lukkari S, Holtz F (2007) Phase relations of a F-enriched peraluminous granite: an experimental study of the Kymi topaz granite stock, southern Finland. Contrib Miner Petrol 153:273–288. doi:10.1007/s00410-006-0146-8

    Article  Google Scholar 

  • MacDonald R, Davies GR, Bliss CM, Leat PT, Bailey DK, Smith RL (1987) Geochemistry of high-silica peralkaline rhyolites, Naivasha, Kenya Rift Valley. J Petrol 28:979–1008. doi:10.1093/petrology/28.6.979

    Article  Google Scholar 

  • MacDonald R, Baginski B, Leat PT, White JC, Dzierzanowski P (2011) Mineral stability in peralkaline silicic rocks: information from trachytes of the Menengai volcano, Kenya. Lithos 125:553–568. doi:10.1016/j.lithos.2011.03.011

    Article  Google Scholar 

  • Mann U, Marks M, Markl G (2006) Influence of the oxygen fugacity on mineral compositions in peralkaline melts: the Katzenbuckel volcano, Southwest Germany. Lithos 91:262–285. doi:10.1016/j.lithos.2005.09.004

    Article  Google Scholar 

  • Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb. Contrib Miner Petrol 76:206–215. doi:10.1007/bf00371960

    Article  Google Scholar 

  • Markl G (2001) Stability of Na–Be minerals in late-magmatic fluids of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:145–158

    Google Scholar 

  • Markl G, Marks M, Schwinn G, Sommer H (2001) Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq complex, South Greenland. J Petrol 42:2231–2258. doi:10.1093/petrology/42.12.2231

    Article  Google Scholar 

  • Markl G, Marks MAW, Frost BR (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. J Petrol 51:1831–1847. doi:10.1093/petrology/egq040

    Article  Google Scholar 

  • Marks M, Markl G (2001) Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilimaussaq intrusion, South Greenland, as deduced from phase equilibria. J Petrol 42:1947–1969. doi:10.1093/petrology/42.10.1947

    Article  Google Scholar 

  • Marks M, Markl G (2003) Ilímaussaq ‘en miniature’: closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilímaussaq no. 117). Mineral Mag 67:893–919. doi:10.1180/0026461036750150

    Article  Google Scholar 

  • Marks MAW, Vennemann T, Siebel W, Markl G (2004) Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the peralkaline Ilímaussaq intrusion, south Greenland. Geochim Cosmochim Acta 68:3379–3395. doi:10.1016/j.gca.2003.12.008

    Article  Google Scholar 

  • Marks MAW, Hettmann K, Schilling J, Frost BR, Markl G (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. J Petrol 52:439–455. doi:10.1093/petrology/egq086

    Article  Google Scholar 

  • Médard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Miner Petrol 155:417–432. doi:10.1007/s00410-007-0250-4

    Article  Google Scholar 

  • Metrich N, Rutherford MJ (1992) Experimental study of chlorine behavior in hydrous silicic melts. Geochim Cosmochim Acta 56:607–616. doi:10.1016/0016-7037(92)90085-W

    Article  Google Scholar 

  • Michael PJ, Schilling J-G (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochim Cosmochim Acta 53:3131–3143. doi:10.1016/0016-7037(89)90094-X

    Article  Google Scholar 

  • Nekvasil H, Burnham CW (eds) (1987) The calculated individual effects of pressure and water content on phase equilibiria in the granite system. Magmatic processes: physicochemical principles. Geochemical Society, University Park, Pennsylvania

    Google Scholar 

  • Nekvasil H, Dondolini A, Horn J, Filiberto J, Long H, Lindsley DH (2004) The origin and evolution of silica-saturated alkalic suites: an experimental study. J Petrol 45:693–721. doi:10.1093/petrology/egg103

    Article  Google Scholar 

  • Nicholls J, Carmichael ISE (1969) Peralkaline acid liquids: a petrological study. Contrib Miner Petrol 20:268–294. doi:10.1007/BF00377480

    Article  Google Scholar 

  • Ohmoto H, Kerrick D (1977) Devolatilization equilibria in graphitic systems. Am J Sci 277:1013–1044. doi:10.2475/ajs.277.8.1013

    Article  Google Scholar 

  • O’Neill HSC (1987a) The quartz–fayalite–iron and quartz–fayalite–magnetite equilibria and the free energies of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72:67–75

    Google Scholar 

  • O’Neill HSC (1987b) The free energies of formation of NiO, CoO, Ni2SiO4. Am Mineral 72:280–291

    Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647. doi:10.2475/ajs.257.9.609

    Article  Google Scholar 

  • Piotrowski JM, Edgar AD (1970) Melting relations of undersaturated alkaline rocks from South Greenland. Meddelelser om Grønland 181:62

    Google Scholar 

  • Poulsen V (1964) The sandstones of the Precambrian Eriksfjord formation in South Greenland. Rapp Grønl Geol Unders 2:16

    Google Scholar 

  • Ratajeski K, Sisson TW (1999) Loss of iron to gold capsules in rock-melting experiments. Am Mineral 84:1521–1527

    Google Scholar 

  • Rayleigh FRS (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos Mag Ser 5(42):493–498. doi:10.1080/14786449608620944

    Article  Google Scholar 

  • Scaillet B, MacDonald R (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. J Petrol 42:825–845. doi:10.1093/petrology/42.4.825

    Article  Google Scholar 

  • Scaillet B, MacDonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. J Petrol 44:1867–1894. doi:10.1093/petrology/egg062

    Article  Google Scholar 

  • Scaillet B, MacDonald R (2006) Experimental constraints on pre-eruption conditions of pantelleritic magmas: evidence from the Eburru complex, Kenya Rift. Lithos 91:95–108. doi:10.1016/j.lithos.2006.03.010

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36:663–705. doi:10.1093/petrology/36.3.663

    Article  Google Scholar 

  • Scaillet B, Pichavant H, Cioni R (2008) Upward migration of Vesuvius magma chamber over the past 20,000 years. Nature 455:216–219. doi:10.1038/nature07232

    Article  Google Scholar 

  • Schilling J, Frost BR, Marks MAW, Wenzel T, Markl G (2011) Fe–Ti oxide-silicate (QUIlF-type) equilibria in feldspathoid-bearing systems. Am Mineral 96:100–110. doi:10.2138/am.2011.3596

    Article  Google Scholar 

  • Schmidt BC, Behrens H (2008) Water solubility in phonolite melts: influence of melt composition and temperature. Chem Geol 256:259–268. doi:10.1016/j.chemgeo.2008.06.043

    Article  Google Scholar 

  • Schwab RG, Kuestner D (1981) Die Gleichgewichtsfugazitäten geologisch und technologisch wichtiger Sauerstoffpuffer. Neues Jahrbuch der Mineralogie Abhandlungen 140:111–142

    Google Scholar 

  • Sood MK, Edgar AD (1970) Melting relations of undersaturated alkaline rocks. Meddelelser om Grønland 181:41

    Google Scholar 

  • Sørensen H (1997) The agpaitic rocks—an overview. Mineral Mag 61:485–498. doi:10.1180/minmag.1997.061.407.02

    Article  Google Scholar 

  • Sørensen H (2001) The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results. Geol Greenl Surv Bull 190:1–167

    Google Scholar 

  • Stelling J, Botcharnikov RE, Beermann O, Nowak M (2008) Solubility of H2O- and chlorine-bearing fluids in basaltic melt of Mount Etna at T = 1050–1250 °C and P = 200 MPa. Chem Geol 256:102–110. doi:10.1016/j.chemgeo.2008.04.009

    Article  Google Scholar 

  • Thompson RN, Chisholm JE (1969) Synthesis of aenigmatite. Mineral Mag 37:253–255. doi:10.1180/minmag.1969.037.286.15

    Article  Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental-study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase-relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170. doi:10.1093/petrology/36.5.1137

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74:153

    Google Scholar 

  • Upton BGJ, Emeleus CH, Heaman LM, Goodenough KM, Finch AA (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68:43–65. doi:10.1016/S0024-4937(03)00030-6

    Article  Google Scholar 

  • Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization-an experimental study at 1.0 GPa. J Petrol 45:2369–2388. doi:10.1093/petrology/egh042

    Article  Google Scholar 

  • Wager LR, Deer WA (1939) Geological investigations in east Greenland. Part III. The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland. Meddelelser om Grønland 105:352

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib Miner Petrol 70:407–419. doi:10.1007/bf00371047

    Article  Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1987) Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah. Geochim Cosmochim Acta 51:389–402. doi:10.1016/0016-7037(87)90057-3

    Article  Google Scholar 

Download references

Acknowledgments

We thank Indra Gill-Kopp for the careful sample preparation. Norbert Walker and Barbara Maier kindly assembled gold and graphite capsules. Philipp Bellucci, Huy-Tung Nguyen, Stephan Reiche and Rainer Babiel are thanked for support with the experimental work. XRF analyses of the starting glasses were done by Heiner Taubald, Urs Dippon performed Mössbauer spectroscopy on the starting glasses, and Harald Behrens analyzed our samples with KFT. Special thanks go to Thomas Wenzel for invaluable support with challenging EMP analyses. We thank Renat Almeev, Bruno Scaillet and an anonymous reviewer for constructive and helpful comments. Financial support of the Deutsche Forschungsgemeinschaft (grants MA 2563/4-1 and NO 378/7-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Giehl.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2012_809_MOESM1_ESM.eps

Supplementary material eFig. 1 Speciation of a C-O-H fluid in equilibrium with graphite (aC = 1) for the investigated T interval (calculated after O’Neill 1987a; Huizenga 2001) (EPS 272 kb)

410_2012_809_MOESM2_ESM.eps

Supplementary material eFig. 2 Fe2O3 and TiO2 in Afs and Nph analyses show a roughly linear relationship indicating significant contamination from the surrounding residual glass for some analyses (EPS 299 kb)

410_2012_809_MOESM3_ESM.eps

Supplementary material eFig. 3 Phase proportions of crystal phases and residual glasses: comparison of image analysis and mass balance (EPS 349 kb)

410_2012_809_MOESM4_ESM.eps

Supplementary material eFig. 4 Comparison of H2O contents in glasses based on KFT and the EMP by-difference method. EMP error bars are ± 1σ. The oxidation state of iron is unknown, data points are calculated as XFe3+ = 0.5, the Fe2+/3+ error accounts for XFe3+ = 0-1 and is well within statistical uncertainty. The horizontal error indicate the uncertainty if the amount of Mag is under- or overestimated by a factor of two (EPS 273 kb)

410_2012_809_MOESM5_ESM.eps

Supplementary material eFig. 5 (a) Abundance of Mag (wt. %) correlated with XUsp, typical errors are given for mass balance and image analysis, the error for XUsp is represented by the symbol size and (b) prevailing fO2 correlated with XUsp. Inherited Mag from hydrated starting glasses did not fully equilibrate in reduced H2O-bearing experiments (EPS 587 kb)

410_2012_809_MOESM6_ESM.eps

Supplementary material eFig. 6 Correlation of T in dry experiments with XFe3+ in (a) Mag and (b) Cpx expressed as decreasing XUsp for Mag and increasing XAeg for Cpx. Corresponding (c) Na2O content (wt. %) and (d) A. I. of the coexisting residual melt are shown. For symbols, see Figs. 5 & 6 (EPS 336 kb)

Supplementary material 7 (XLS 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giehl, C., Marks, M. & Nowak, M. Phase relations and liquid lines of descent of an iron-rich peralkaline phonolitic melt: an experimental study. Contrib Mineral Petrol 165, 283–304 (2013). https://doi.org/10.1007/s00410-012-0809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0809-6

Keywords

Navigation