Skip to main content
Log in

Timescales of convection in magma chambers below the Mid-Atlantic ridge from melt inclusions investigations

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Closed hopper and complex swallowtail morphologies of olivine microcrysts have been described in the past in both mid-oceanic ridge basalts and subaerial tholeitic volcanoes and indicate fluctuations in magma undercooling. We describe similar morphologies in a Mid-Atlantic ridge pillow basalt (sample RD87DR10), and in addition we estimate the duration of temperature fluctuations required to produce these textures as follows: (1) Pairs of melt inclusions are arranged symmetrically around the centre of hopper crystals and each pair represents a heating–cooling cycle. Using the literature olivine growth rates relevant to the observed morphologies, and measuring the distance between two successive inclusions, we estimate the minimum time elapsed during one convection cycle. (2) The major element composition of melt inclusions (analysed by electron microprobe) was found to be in the range of the boundary layer measured in the glass surrounding the olivines, irrespective of their size. Several major elements demonstrate that this boundary layer results from rapid quenching on the seafloor, and not from crystal growth at depth, implying the inclusions had the same composition as the surrounding magma when they were sealed. Using diffusivity of slow diffusing elements such as Al2O3, we estimate the minimum time required for inclusion formation. These two independent approaches give concordant results: each cooling–heating cycle lasted between a few minutes and 1 h minimum. Thus, these crystals probably recorded thermal convection in small magmatic bodies (a dyke or shallow magma chamber) during the last hour or hours before eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Armienti P, Innocenti F et al (1991) Crystal population density in not stationary volcanic systems: estimate of olivine growth rate in basalts of Lanzarote (Canary Islands). Mineral Petrol 44(3):181–196

    Article  Google Scholar 

  • Canales JP, Nedimovic MR, Kent GM, Carbotte SM, Detrick RS (2009) Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge. Nature 460:89–100

    Article  Google Scholar 

  • Chen Y, Zhang Y (2008) Olivine dissolution in basaltic melt. Geochim et Cosmochim Acta 72:4756–4777

    Article  Google Scholar 

  • Costa F, Chakraborty S, Dohmen R (2003) Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim Cosmochim Acta 67:2189–2200

    Article  Google Scholar 

  • Costa F, Coogan LA, Chakraborty S (2010) The time scales of magma mixing and mingling involving primitive melts and melt-mush interaction at mid-ocean ridges. Contrib Mineral Petrol 159:371–387

    Article  Google Scholar 

  • Davis MJ, Ihinger PD (1998) Heterogeneous crystal nucleation on bubbles in silicate melt. Am Mineral 83:1008–1015

    Google Scholar 

  • Donaldson CH (1975) Calculated diffusion coefficients and the growth rate of olivine in a basalt magma. Lithos 8(2):163–174

    Article  Google Scholar 

  • Donaldson CH (1976) An experimental investigation of olivine morphology. Contrib Mineral Petrol 57:187–213

    Article  Google Scholar 

  • Donaldson CH (1979) An experimental investigation of the delay in nucleation of olivine in Mafic Magmas. Contrib Mineral Petrol 69:21–32

    Article  Google Scholar 

  • Dvorak JJ, Dzurisin D (1997) Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents. Rev Geophys 35:343–384

    Article  Google Scholar 

  • Faure F, Schiano P (2004) Crystal morphologies in pillow basalts: implications for mid-ocean ridge processes. Earth Planet Sci Lett 220:331–344

    Article  Google Scholar 

  • Faure F, Trolliard G, Nicollet C, Montel JM (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol 145:251–263

    Article  Google Scholar 

  • Faure F, Schiano P, Trolliard G, Nicollet C, Soulestin B (2007) Textural evolution of polyhedral olivine experiencing rapid cooling rates. Contrib Mineral Petrol 153:405–416

    Article  Google Scholar 

  • Jambon A, Lussiez P, Clocchiatti R, Weisz J, Hernandez J (1992) Olivine growth rates in a tholeiitic basalt: An experimental study of melt inclusions in plagioclase. Chem Geol 96:277–287

    Article  Google Scholar 

  • Kirkpatrick R (1978) Processes of crystallization in pillow basalts, hole 396B, DSDP LEG 46. In: Dmitriev L, Heirtzler J et al (eds) Initial reports of the Deep Sea Drilling Project 46. US Govt Print Office, Washington, pp 271–282

    Google Scholar 

  • Kirkpatrick RJ (1983) Theory of nucleation in silicate melts. Am Mineral 68:66–77

    Google Scholar 

  • Kohut E, Nielsen RL (2004) Melt inclusion formation mechanisms and compositional effects in high-An feldspar and high-Fo olivine in anhydrous mafic silicate liquids. Contrib Mineral Petrol 147(6):684–704

    Article  Google Scholar 

  • Kress VC, Ghiorso MS (1995) Multicomponent diffusion in basaltic melts. Geochim Cosmochim Acta 59:313–324

    Article  Google Scholar 

  • Marsh BD (1989) On Convective Style and Vigor in Sheet-like Magma Chambers. J Petrol 30:479–530

    Google Scholar 

  • Pack A, Palme H (2003) Partitioning of Ca and Al between forsterite and silicate melt in dynamic systems with implications for the origin of Ca, Al-rich forsterites in primitive meteorites. Meteorit Planet Sci 38(8):1263–1281

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:413–439

    Google Scholar 

  • Rubin KH, van der Zander I, Smith MC, Bergmanis EC (2005) Minimum speed limit for ocean ridge magmatism from Pb-210-Ra-226-Th-230 disequilibria. Nature 437:534–538

    Article  Google Scholar 

  • Schiano P, Provost A, Clocchiatti R, Faure F (2006) Transcrystalline melt migration and Earth’s mantle. Science 314:970–974

    Article  Google Scholar 

  • Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, Canales JP, Dusunur D, Escartin J, Miranda JM (2006) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442:1029–1032

    Article  Google Scholar 

  • Turner S, Evans P, Hawkesworth C (2001) Ultrafast source-to-surface movement of melt at island arcs from Ra-226-Th-230 systematics. Science 292:1363–1366

    Article  Google Scholar 

  • Welsch B, Faure F, Bachelery P, Famin V (2009) Microcrysts record transient convection at Piton de la Fournaise Volcano (La Reunion hotspot). J Petrol 50:2287–2305

    Article  Google Scholar 

Download references

Acknowledgments

François Faure thanks L’Agence Nationale de la Recherche for financial support (grant ANR-07-BLAN-0130-CSD6, MIME). We thank Fidel Costa and an anonymous reviewer for constructive comments which improved the final manuscript. This is CRPG contribution number 2169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélia Colin.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 17251 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colin, A., Faure, F. & Burnard, P. Timescales of convection in magma chambers below the Mid-Atlantic ridge from melt inclusions investigations. Contrib Mineral Petrol 164, 677–691 (2012). https://doi.org/10.1007/s00410-012-0764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0764-2

Keywords

Navigation