Skip to main content

Advertisement

Log in

Phase relations of phlogopite and pyroxene with magnesite from 4 to 8 GPa: KCMAS–H2O and KCMAS–H2O–CO2

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

To constrain the melting phase relationships of phlogopite and magnesite in the presence of clino- and orthopyroxene, we performed experiments in the K2O–CaO–MgO–Al2O3–SiO2–H2O (KCMAS–H2O) and K2O–CaO–MgO–Al2O3–SiO2–H2O–CO2 (KCMAS–H2O–CO2) systems at pressures of 4–8 GPa and temperatures from 1100 to 1600 °C. We bracketed the carbonate-free solidus between 1250 and 1300 °C at 4 and 5 GPa, and between 1300 and 1350 °C at 6, 7 and 8 GPa. The carbonate-bearing solidus was bracketed between 1150 and 1200 °C at 4, 5 and 6 GPa, and between 1100 and 1150 °C at 7 and 8 GPa. Below the solidus in both systems at 4–6 GPa, phlogopite is in equilibrium with enstatite, diopside, garnet (plus magnesite in the carbonate-bearing system) and a fluid. At 7 GPa, phlogopite coexists with KK-richterite, enstatite, diopside, garnet (plus magnesite in the carbonate-bearing system) and a fluid. KK-richterite is the only stable K-bearing phase at 8 GPa and coexists with enstatite, diopside, garnet (plus magnesite in the carbonate-bearing system) and a fluid. In KCMAS–H2O, phlogopite is present to ~100 °C above the solidus. Olivine forms at the solidus and coexists with enstatite, diopside, garnet and melt. At depth in a subcontinental lithospheric mantle keel, phlogopite would be stable with orthopyroxene, clinopyroxene and magnesite to ~5 GPa along a 40 mW/m2 geotherm. A hydrous, potassic and CO2-bearing melt that intrudes the subcontinental mantle can react with olivine, enstatite and garnet, crystallizing phlogopite, magnesite and potentially liberating a hydrous fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF, and phi(rho Z) procedures. In: Newbury DE (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 239–246

    Google Scholar 

  • Brey GP, Kohler T, Nickel KG (1990) Geothermobarometry in 4-phase lherzolites. 1. Experimental results from 10 to 60 Kb. J Petrol 31(6):1313–1352

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281(3–4):333–342. doi:10.1016/j.chemgeo.2010.12.019

    Article  Google Scholar 

  • Conceição RV, Green DH (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite plus pargasite lherzolite. Lithos 72(3–4):209–229

    Article  Google Scholar 

  • Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth Planet Sci Lett 397:80–92

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662. doi:10.1038/nature04612

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral 92(2–3):370–379. doi:10.2138/am.2007.2201

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in earth’s interior. Earth Planet Sci Lett 298(1–2):1–13. doi:10.1016/j.epsl.2010.06.039

    Article  Google Scholar 

  • Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res 108(B7):2350. doi:10.1029/2002JB002168

    Article  Google Scholar 

  • Enggist A, Chu L, Luth RW (2012) Phase relations of phlogopite with magnesite from 4 to 8 GPa. Contrib Mineral Petrol 163:467–481. doi:10.1007/s00410-011-0681-9

    Article  Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112(S1):274–283. doi:10.1016/j.lithos.2009.03.020

    Article  Google Scholar 

  • Frost DJ (2006) The stability of hydrous mantle phases. Rev Mineral Geochem 62(1):243–271. doi:10.2138/rmg.2006.62.11

    Article  Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158(6):723–737. doi:10.1007/s00410-009-0407-4

    Article  Google Scholar 

  • Green DH, Hibberson WO, Kovacs I, Rosenthal A (2010) Water and its influence on the lithosphere-asthenosphere boundary. Nature 467(7314):448–451. doi:10.1038/nature09369

    Article  Google Scholar 

  • Green DH, Hibberson WO, Rosenthal A, Kovács I, Yaxley GM, Falloon TJ, Brink F (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol 55(10):2067–2096

    Article  Google Scholar 

  • Griffin WL, Doyle BJ, Ryan CG, Pearson NJ, O’Reilly SY, Davies R, Kivi K, Van Achterbergh E, Natapov LM (1999) Layered mantle lithosphere in the Lac de Gras area, Slave Craton: composition, structure and origin. J Petrol 40(5):705–727

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2008) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50(7):1185–1204. doi:10.1093/petrology/egn033

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89. doi:10.1016/j.epsl.2006.06.043

    Article  Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307(1–2):59–70. doi:10.1016/j.epsl.2011.04.034

    Article  Google Scholar 

  • Helmstaedt HH, Schulze DJ (1989) Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In: Ross J (ed) Kimberlites and related rocks: their composition, occurrence, origin and emplacement GSA Spec Publ No 14, vol 1. Blackwell, Carlton, pp 358–368

    Google Scholar 

  • Hermann J (2002) Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol 143(2):219–235. doi:10.1007/s00410-001-0336-3

    Article  Google Scholar 

  • Holbig ES, Grove TL (2008) Mantle melting beneath the Tibetan Plateau: experimental constraints on ultrapotassic magmatism. J Geophys Res. doi:10.1029/2007JB005149

    Google Scholar 

  • Keshav S, Gudfinnsson GH (2010) Experimentally dictated stability of carbonated oceanic crust to moderately great depths in the earth: results from the solidus determination in the system CaO–MgO–Al2O3–SiO2–CO2. J Geophys Res 115:B05205. doi:10.1029/2009JB006457

    Article  Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2004) A novel approach to determine high-pressure high-temperature fluid and melt compositions using diamond-trap experiments. Am Mineral 89(7):1078–1086

    Article  Google Scholar 

  • Kessel R, Pettke T, Fumagalli P (2015) Melting of metasomatized peridotite at 4–6 GPa and up to 1200 °C: an experimental approach. Contrib Mineral Petrol 169(4):1–19. doi:10.1007/s00410-015-1132-9

    Article  Google Scholar 

  • Konzett J, Fei YW (2000) Transport and storage of potassium in the Earth’s upper mantle and transition zone: an experimental study to 23 GPa in simplified and natural bulk compositions. J Petrol 41(4):583–603. doi:10.1093/petrology/41.4.583

    Article  Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40(4):629–652

    Article  Google Scholar 

  • Luth RW (1997) Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am Mineral 82(11–12):1198–1209

    Article  Google Scholar 

  • Luth RW (2014) 3.9—volatiles in earth’s mantle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 355–391

    Chapter  Google Scholar 

  • Luth RW, Trønnes R, Canil D (1993) Volatile-bearing phases in the Earth’s mantle. In: Luth RW (ed) Short course handbook on experiments at high pressure and applications to the earth’s mantle, vol SC-21. Mineralogical Association of Canada, Edmonton, pp 445–485

    Google Scholar 

  • Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. In: Ross J, Jacques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement GSA Spec Publ No 14. Blackwell, Carlton, pp 571–581

    Google Scholar 

  • Modreski PJ, Boettcher AL (1972) Stability of phlogopite + enstatite at high-pressures—model for micas in interior of earth. Am J Sci 272(9):852–869

    Article  Google Scholar 

  • Modreski PJ, Boettcher AL (1973) Phase relationships of phlogopite in the system K2O–MgO–CaO–Al2O3–SiO2–H2O to 35 kilobars: a better model for micas in the interior of the Earth. Am J Sci 273(5):385–414

    Article  Google Scholar 

  • Sato K, Katsura T, Ito E (1997) Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism. Earth Planet Sci Lett 146(3–4):511–526

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1–2):5–32. doi:10.1016/j.oregeorev.2007.05.002

    Article  Google Scholar 

  • Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: implication for magma genesis in subduction zones. Geophys Res Lett 17(1):29–32. doi:10.1029/GL017i001p00029

    Article  Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183(1–2):73–90. doi:10.1016/j.pepi.2010.02.004

    Article  Google Scholar 

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite—implications for metasomatism in the continental lithospheric mantle. Am Mineral 77(7–8):784–794

    Google Scholar 

  • Till CB, Grove TL, Withers AC (2012) The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol 163(4):669–688

    Article  Google Scholar 

  • Trønnes RG (2002) Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineral Petrol 74(2–4):129–148. doi:10.1007/s007100200001

    Google Scholar 

  • Tumiati S, Fumagalli P, Tiraboschi C, Poli S (2013) An experimental study on COH-bearing peridotite up to 3.2 GPa and implications for crust–mantle recycling. J Petrol 54(3):453–479. doi:10.1093/petrology/egs074

    Article  Google Scholar 

  • Ulmer P, Sweeney RJ (2002) Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim Cosmochim Acta 66(12):2139–2153

    Article  Google Scholar 

  • Walter MJ, Thibault Y, Wei K, Luth RW (1995) Characterizing experimental pressure and temperature conditions in multi-anvil apparatus. Can J Phys 73(5–6):273–286

    Article  Google Scholar 

  • Wendlandt RF, Eggler DH (1980) The origins of potassic magmas: 2, stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4–MgO–SiO2–H2O–CO2 at high pressures and high temperatures. Am J Sci 280(5):421–458. doi:10.2475/ajs.280.5.421

    Article  Google Scholar 

  • Yamashita H, Arima M, Ohtani E (1995) High pressure melting experiments on group II kimberlite up to 8 GPa; implications for mantle metasomatism. In: Proceedings of the 6th international Kimberlite conference, pp 259–270

  • Yang HX, Konzett J, Prewitt CT, Fei YW (1999) Single-crystal structure refinement of synthetic K–M4–substituted potassic richterite, K(KCa)Mg5Si8O22(OH)2. Am Mineral 84(4):681–684

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the training provided by D. Caird to the first author for assembling experiments and operating the multi-anvil apparatus. We thank S. Matveev for the help with the electron microprobe. Comments by R. Trønnes and three anonymous reviewers considerably improved iterations of this manuscript. This research was funded by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to RWL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Enggist.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enggist, A., Luth, R.W. Phase relations of phlogopite and pyroxene with magnesite from 4 to 8 GPa: KCMAS–H2O and KCMAS–H2O–CO2 . Contrib Mineral Petrol 171, 88 (2016). https://doi.org/10.1007/s00410-016-1304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1304-2

Keywords

Navigation