Skip to main content
Log in

Geology and geochemistry of Pachmarhi dykes and sills, Satpura Gondwana Basin, central India: problems of dyke-sill-flow correlations in the Deccan Traps

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Many tholeiitic dyke-sill intrusions of the Late Cretaceous Deccan Traps continental flood basalt province are exposed in the Satpura Gondwana Basin around Pachmarhi, central India. We present field, petrographic, major and trace element, and Sr–Nd–Pb isotope data on these intrusions and identify individual dykes and sills that chemically closely match several stratigraphically defined formations in the southwestern Deccan (Western Ghats). Some of these formations have also been identified more recently in the northern and northeastern Deccan. However, the Pachmarhi intrusions are significantly more evolved (lower Mg numbers and higher TiO2 contents) than many Deccan basalts, with isotopic signatures generally different from those of the chemically similar lava formations, indicating that most are not feeders to previously characterized flows. They appear to be products of mixing between Deccan basalt magmas and partial melts of Precambrian Indian amphibolites, as proposed previously for several Deccan basalt lavas of the lower Western Ghats stratigraphy. Broad chemical and isotopic similarities of several Pachmarhi intrusions to the northern and northeastern Deccan lavas indicate petrogenetic relationships. Distances these lava flows would have had to cover, if they originated in the Pachmarhi area, range from 150 to 350 km. The Pachmarhi data enlarge the hitherto known chemical and isotopic range of the Deccan flood basalt magmas. This study highlights the problems and ambiguities in dyke-sill-flow correlations even with extensive geochemical fingerprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acharyya SK (2003) The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gond Res 6:197–214. doi:10.1016/S1342-937X(05)70970-9

    Article  Google Scholar 

  • Alexander PO (1981) Age and duration of Deccan volcanism: K–Ar evidence. In: Subbarao KV, Sukheswala RN (eds) Deccan volcanism. Geol Soc Ind Mem 3:244–258

  • Auden JB (1949) Dykes in western India—a discussion of their relationships with the Deccan Traps. Trans Nat Inst Sci Ind 3:123–157

    Google Scholar 

  • Baker M, Grove T, Kinzler R, Donnelly-Nolan J, Wandless G (1991) Origin of compositional zonation (high-alumina basalt to basaltic andesite) in the Giant Crater Lava Field, Medicine Lake Volcano, northern California. J Geophys Res 96(B13):21819–21842. doi:10.1029/91JB01945

    Article  Google Scholar 

  • Baksi AK (2007) A quantitative tool for detecting alteration in undisturbed rocks and minerals—I: water, chemical weathering, and atmospheric argon. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes. Geol Soc Am Spec Pap 430:285–303

  • Beane JE (1988) Flow stratigraphy, chemical variation and petrogenesis of Deccan flood basalts from the Western Ghats, India. Ph.D. dissertation, Washington State University, USA

  • Beane JE, Turner CA, Hooper PR, Subbarao KV, Walsh JN (1986) Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull Volcanol 48:61–83. doi:10.1007/BF01073513

    Article  Google Scholar 

  • Bhattacharji S, Chatterjee N, Wampler JM, Nayak PN, Deshmukh SS (1996) Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan Flood Basalt volcanism near the K/T boundary: evidence from mafic dyke swarms. J Geol 104:379–398

    Article  Google Scholar 

  • Bhattacharji S, Sharma R, Chatterjee N (2004) Two and three-dimensional gravity modeling along western continental margin and intraplate Narmada-Tapti rifts: its relevance to Deccan flood basalt volcanism. In: Sheth HC, Pande K (eds) Magmatism in India through time. Proc Ind Acad Sci (Earth Planet Sci) 113:771–784

  • Bhowmik SK (2006) Ultra high temperature-metamorphism and its significance in the Central Indian Tectonic Zone. Lithos 92:484–505. doi:10.1016/j.lithos.2006.03.061

    Article  Google Scholar 

  • Bhowmik SK, Roy A (2003) Garnetiferous metabasites from the Sausar Mobile Belt: petrology, P–T path and implications for the tectonothermal evolution of the Central Indian Tectonic Zone. J Petrol 44:387–420. doi:10.1093/petrology/44.3.387

    Article  Google Scholar 

  • Bhowmik SK, Sarbadhikari AB, Spiering B, Raith MM (2005) Mesoproterozoic reworking of Palaeoproterozoic ultrahigh-temperature granulites in the Central Indian Tectonic Zone and its implications. J Petrol 46:1085–1119. doi:10.1093/petrology/egi011

    Article  Google Scholar 

  • Bondre NR, Hart WK, Sheth HC (2006) Geology and geochemistry of the Sangamner mafic dyke swarm, western Deccan volcanic province, India: implications for regional stratigraphy. J Geol 114:155–170. doi:10.1086/499568

    Article  Google Scholar 

  • Carmichael ISE (1964) The petrology of Thingmuli, a tertiary volcano in eastern Iceland. J Petrol 5:435–460

    Google Scholar 

  • Chakraborty C, Ghosh SK (2005) Pull-apart origin of the Satpura Gondwana basin, central India. Tectonophysics 377:299–324. doi:10.1016/j.tecto.2003.09.011

    Article  Google Scholar 

  • Chandrasekharam D, Mahoney JJ, Sheth HC, Duncan RA (1999) Elemental and Nd–Sr–Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India. J Volcanol Geotherm Res 93:111–123. doi:10.1016/S0377-0273(99)00081-5

    Article  Google Scholar 

  • Chatterjee N, Bhattacharji S (2008) Trace element variations in Deccan basalts: roles of mantle melting, fractional crystallization and crustal assimilation. J Geol Soc India 71:171–188

    Google Scholar 

  • Choubey VD (1971) Pre-Deccan Trap topography in central India and crustal warping in relation to Narmada rift structure and volcanic activity. Bull Volcanol 35:660–685. doi:10.1007/BF02596836

    Article  Google Scholar 

  • Cox KG, Hawkesworth CJ (1985) Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. J Petrol 26:355–377

    Google Scholar 

  • Crookshank H (1936) Geology of the two northern slopes of the Satpuras between the Morand and Sher rivers. Mem Geol Surv Ind 66:173–381

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202. doi:10.1016/0012-821X(81)90153-9

    Article  Google Scholar 

  • Deshmukh SS, Sehgal MN (1988) Mafic dyke swarms in the Deccan volcanic province of Madhya Pradesh and Maharashtra. In: Subbarao KV (ed) Deccan flood basalts. Geol Soc Ind Mem 10:323–340

  • Devey CW, Cox KG (1987) Relationships between crustal contamination and crystallization in continental flood basalt magmas, with special reference to the Deccan Traps of the Western Ghats, India. Earth Planet Sci Lett 84:59–68. doi:10.1016/0012-821X(87)90176-2

    Article  Google Scholar 

  • Galerne CY, Neumann E-R, Planke S (2008) Emplacement mechanisms of sill complexes: information from the geochemical architecture of the Golden Valley sill complex, South Africa. J Volcanol Geotherm Res 177:425–440. doi:10.1016/j.jvolgeores.2008.06.004

    Article  Google Scholar 

  • Gao S, Liu X, Yuan H, Hattendorf B, Günther D, Chen L, Hu S (2002) Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation—inductively coupled plasma—mass spectrometry. Geostand Newsl 26:181–196. doi:10.1111/j.1751-908X.2002.tb00886.x

    Article  Google Scholar 

  • Ghosh P, Sarkar S, Maulik P (2006) Sedimentology of a muddy alluvial deposit: Triassic Denwa Formation, India. Sediment Geol 191:3–36. doi:10.1016/j.sedgeo.2006.01.002

    Article  Google Scholar 

  • Goulty NR, Schofield N (2008) Implications of simple flexure theory for the formation of saucer-shaped sills. J Struct Geol 30:812–817. doi:10.1016/j.jsg.2008.04.002

    Article  Google Scholar 

  • Gudmundsson A (1995) Infrastructure and mechanics of volcanic systems in Iceland. J Volcanol Geotherm Res 64:1–22. doi:10.1016/0377-0273(95)92782-Q

    Article  Google Scholar 

  • Gudmundsson A, Marinoni LB (2002) Geometry, emplacement, and arrest of dykes. Annal Tecto 13:71–92

    Google Scholar 

  • Hooper PR (1997) The Columbia River flood basalt province: current status. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism. Am Geophys Union Geophys Monogr 100:1–27

  • Jain JC, Neal C (1996) Report of the ICP–MS facility, 1993–1996. Notre Dame Univ Open File Rep, pp 30

  • Kaila KL (1988) Mapping the thickness of Deccan Trap flows in India from DSS studies and inferences about a hidden Mesozoic basin in the Narmada–Tapti region. In: Subbarao KV (ed) Deccan flood basalts. Geol Soc Ind Mem 10:91–116

  • Keszthelyi LP, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophys Res 103:27447–27464. doi:10.1029/98JB00606

    Article  Google Scholar 

  • Khadri SFR, Subbarao KV, Hooper PR, Walsh JN (1988) Stratigraphy of Thakurvadi Formation, western Deccan basalt province, India. In: Subbarao KV (ed) Deccan flood basalts. Geol Soc Ind Mem 10: 281–304

  • Le Bas MJ, LeMaitre RW, Streckeisen A, Zanettin P (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Lightfoot PC, Hawkesworth CJ (1988) Origin of Deccan Trap lavas: evidence from combined trace element and Sr-, Nd- and Pb-isotope studies. Earth Planet Sci Lett 91:89–104. doi:10.1016/0012-821X(88)90153-7

    Article  Google Scholar 

  • Lightfoot PC, Hawkesworth CJ, Devey CW, Rogers NW, van Calsteren PWC (1990) Source and differentiation of Deccan Trap lavas: implications of geochemical and mineral chemical variations. J Petrol 31:1165–1200

    Google Scholar 

  • Mahoney JJ (1988) Deccan Traps. In: McDougall JD (ed) Continental flood basalts. Kluwer, Dordrecht, pp 151–194

    Google Scholar 

  • Mahoney J, Macdougall JD, Lugmair GW, Murali AV, Sankar Das M, Gopalan K (1982) Origin of the Deccan Trap flows at Mahabaleshwar inferred from Nd and Sr isotopic and chemical evidence. Earth Planet Sci Lett 60:47–60. doi:10.1016/0012-821X(82)90019-X

    Article  Google Scholar 

  • Mahoney JJ, Nicollet C, Dupuy C (1991) Madagascar basalts: tracking oceanic and continental sources. Earth Planet Sci Lett 104:350–363. doi:10.1016/0012-821X(91)90215-4

    Article  Google Scholar 

  • Mahoney JJ, Sheth HC, Chandrasekharam D, Peng ZX (2000) Geochemistry of flood basalts of the Toranmal section, northern Deccan Traps, India: implications for regional Deccan stratigraphy. J Petrol 41:1099–1120. doi:10.1093/petrology/41.7.1099

    Article  Google Scholar 

  • Malthe-Sørensen A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geol Soc Lond Spec Publ 234:215–227

  • Melluso L, Sethna SF, Morra V, Khateeb A, Javeri P (1999) Petrology of the mafic dyke swarm of the Tapti River in the Nandurbar area (Deccan volcanic province). In: Subbarao KV (ed), Deccan volcanic province. Geol Soc Ind Mem 43:735–755

  • Middlemost EAK (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77:19–26. doi:10.1016/0009-2541(89)90011-9

    Article  Google Scholar 

  • Najafi SJ, Cox KG, Sukheswala RN (1981) Geology and geochemistry of the basalt flows (Deccan Traps) of the Mahad-Mahabaleshwar section, India. In: Subbarao KV, Sukheswala RN (eds) Deccan volcanism. Geol Soc Ind Mem 3: 300–315

  • Natland JH (2007) ΔNb and the role of magma mixing at the East Pacific Rise and Iceland. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes. Geol Soc Am Spec Pap 430:413–449

  • Neal C (2001) Interior of the Moon: the presence of garnet in the primitive deep lunar mantle. J Geophys Res 106(E11):27865–27885. doi:10.1029/2000JE001386

    Article  Google Scholar 

  • Norrish K, Chapell BW (1977) X-ray fluorescence spectrometry. In: Zussman J (ed) Physical methods in determinative mineralogy, 2nd edn. Academic Press, New York, pp 201–272

    Google Scholar 

  • Peng ZX, Mahoney JJ, Hooper PR, Harris C, Beane JE (1994) A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochim Cosmochim Acta 58:267–288. doi:10.1016/0016-7037(94)90464-2

    Article  Google Scholar 

  • Peng ZX, Mahoney JJ, Hooper PR, Macdougall JD, Krishnamurthy P (1998) Basalts of the northeastern Deccan Traps, India: isotopic and elemental geochemistry and relation to southwestern Deccan stratigraphy. J Geophys Res 103:29843–29865. doi:10.1029/98JB01514

    Article  Google Scholar 

  • Pollard DD (1987) Elementary fracture mechanics applied to the structural interpretation of dykes. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geol Assoc Can Spec Pap 34:5–24

  • Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sørensen A (2008) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266:195–204. doi:10.1016/j.epsl.2007.11.015

    Article  Google Scholar 

  • Ray R, Sheth HC, Mallik J (2007) Structure and emplacement of the Nandurbar-Dhule mafic dyke swarm, Deccan Traps, and the tectonomagmatic evolution of flood basalts. Bull Volcanol 69:531–537. doi:10.1007/s00445-006-0089-y

    Article  Google Scholar 

  • Ray R, Shukla AD, Sheth HC, Ray JS, Duraiswami RA, Vanderkluysen L, Rautela CM, Mallik J (2008) Highly heterogeneous Precambrian basement under the central Deccan Traps, India: direct evidence from xenoliths in dykes. Gond Res 13:275–285

    Google Scholar 

  • Rudnick R, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309. doi:10.1029/95RG01302

    Article  Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Miner Petrol 107:41–59. doi:10.1007/BF00311184

    Article  Google Scholar 

  • Sen G (1980) Mineralogical variations in the Delakhari sill, Deccan Trap intrusion, Central India. Contrib Miner Petrol 75:71–78. doi:10.1007/BF00371890

    Article  Google Scholar 

  • Sen G (1983) Deccan Trap intrusion: magma mixing in the Chakhla–Delakhari sill, Chhindwara district, Madhya Pradesh. J Geol Soc India 24:381–393

    Google Scholar 

  • Sen G, Cohen TH (1994) Deccan intrusion, crustal extension, doming and the size of the Deccan-Réunion plume head. In: Subbarao KV (ed) Volcanism. Wiley Eastern, New Delhi, pp 201–216

    Google Scholar 

  • Sheth HC (1998) A reappraisal of the coastal Panvel flexure, Deccan Traps, as a listric-fault-controlled reverse drag structure. Tectonophysics 294:143–149. doi:10.1016/S0040-1951(98)00148-6

    Article  Google Scholar 

  • Sheth HC (2005) Were the Deccan flood basalts derived in part from ancient oceanic crust within the Indian continental lithosphere? Gond Res 8:109–127. doi:10.1016/S1342-937X(05)71112-6

    Article  Google Scholar 

  • Sheth HC (2007) Plume-related regional prevolcanic uplift in the Deccan Traps: absence of evidence, evidence of absence. In: Foulger GR, Jurdy DM (eds), Plates, plumes, and planetary processes. Geol Soc Am Spec Pap 430:785–813

  • Sheth HC, Chandrasekharam D (1997) Plume-rift interaction in the Deccan volcanic province. Phys Earth Planet Int 99:179–187. doi:10.1016/S0031-9201(96)03220-7

    Article  Google Scholar 

  • Sheth HC, Melluso L (2008) The Mount Pavagadh volcanic suite, Deccan Traps: geochemical stratigraphy and magmatic evolution. J Asian Earth Sci 32:5–21. doi:10.1016/j.jseaes.2007.10.001

    Article  Google Scholar 

  • Sheth HC, Ray JS (2002) Rb/Sr–87Sr/86Sr variations in Bombay trachytes and rhyolites (Deccan Traps): Rb–Sr isochron, or AFC process? Int Geol Rev 44:624–638. doi:10.2747/0020-6814.44.7.624

    Article  Google Scholar 

  • Sheth HC, Mahoney JJ, Chandrasekharam D (2004) Geochemical stratigraphy of flood basalts of the Bijasan Ghat section, Satpura Range, India. J Asian Earth Sci 23:127–139. doi:10.1016/S1367-9120(03)00116-0

    Article  Google Scholar 

  • Sridhar AR, Tewari HC (2001) Existence of a sedimentary graben in the western part of the Narmada zone: seismic evidence. J Geodyn 31:19–31. doi:10.1016/S0264-3707(00)00013-2

    Article  Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds), Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345

  • Subbarao KV, Hooper PR (Compilers) (1988) Reconnaissance map of the Deccan Basalt Group in the Western Ghats, India. In: Subbarao KV (ed) Deccan flood basalts. Geol Soc Ind Mem 10 (enclosure) 

  • Subbarao KV, Bodas MS, Hooper PR, Walsh JN (1988) Petrogenesis of Jawhar and Igatpuri formations, western Deccan basalt province, India. In: Subbarao KV (ed) Deccan flood basalts. Geol Soc Ind Mem 10:253–280

  • Swanson DA, Wright RL, Helz RT (1975) Linear vent systems and estimated rates of magma production and eruption for the Yakima Basalt on the Columbia Plateau. Am J Sci 275:877–905

    Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chem Geol 168:279–281. doi:10.1016/S0009-2541(00)00198-4

    Article  Google Scholar 

  • Thy P, Lesher CE, Tegner C (2008) The Skaergaard liquid line of descent revisited. Contrib Miner Petrol (in press)

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb + 205Pb double spike for high-precision lead isotopic analyses. In: Basu AR, Hart SR (eds) Earth processes: reading the isotopic code. Am Geophys Union Geophys Monogr 95:429–437

  • Tolan TL, Reidel SP, Hooper PR, Beeson MH, Fecht KR, Bentley RD, Anderson JL (1989) Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group. In: Reidel SP, Hooper PR (eds), Volcanism and tectonism in the Columbia River flood basalt province. Geol Soc Am Spec Pap 239:1–20

  • Vanderkluysen L, Mahoney JJ, Hooper PR, Sheth HC, Ray R (2006) Location and geometry of the Deccan Traps feeder system inferred from dyke geochemistry. Eos Trans AGU, 87(52), Fall Meet Suppl, abstract V13B–0681

    Google Scholar 

  • Venkatakrishnan R (1984) Parallel scarp retreat and drainage evolution, Pachmarhi area, Madhya Pradesh, central India. J Geol Soc India 25:401–413

    Google Scholar 

  • Venkatakrishnan R (1987) Correlation of cave levels and planation surfaces in the Pachmarhi area, Madhya Pradesh: a case for base level control. J Geol Soc India 29:240–249

    Google Scholar 

  • Verma SP, Torres-Alvarado IS, Sotelo-Rodriguez ZT (2002) SINCLAS: standard igneous norm and volcanic rock classification system. Comput Geosci 28:711–715. doi:10.1016/S0098-3004(01)00087-5

    Article  Google Scholar 

  • Viswanathan S, Chandrasekharam D (1976) Dykes related to Deccan Trap volcanism. In: Proceedings of symposium on Deccan Trap and Bauxite. Geol Surv Ind Spec Publ 14: 97–107

  • Weis D, Kieffer B, Maershalk C, Pretorius W, Barling J (2005) High-precision Pb–Sr–Nd–Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem Geophys Geosyst 6. doi:10.1029/2004GC000852

  • Wilson SA (1997) The collection, preparation, and testing of U.S.G.S. reference material BCR-2, Columbia River Basalt. US Geol Surv Open File Rep 98-xxx

Download references

Acknowledgments

Field work was supported by seed grant 03IR014 to Sheth from the Industrial Research and Consultancy Centre (IRCC), IIT Bombay. We gratefully remember the late Nandkumar Gavli for his valuable field assistance. We thank S.V.S. Murty, Coordinator, PLANEX Programme (ISRO), for allowing use of XRF and ICPMS facilities at the Physical Research Laboratory. Pb isotopic work was supported by the US National Science Foundation grant EAR02-29824 to Mahoney. We thank Andreas Bunger, D. Chandrasekharam, Neil Goulty, Nitin Karmalkar, James Natland, Kanchan Pande, Sverre Planke, Stephane Polteau, Sheila Seaman, Gautam Sen, Sam Sethna, Surendra Pal Verma, and S. Viswanathan for helpful discussions. The manuscript was considerably tightened and improved by the thoughtful official reviews of Nilanjan Chatterjee and Gautam Sen, and the editorial handling of Timothy Grove.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hetu C. Sheth.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheth, H.C., Ray, J.S., Ray, R. et al. Geology and geochemistry of Pachmarhi dykes and sills, Satpura Gondwana Basin, central India: problems of dyke-sill-flow correlations in the Deccan Traps. Contrib Mineral Petrol 158, 357–380 (2009). https://doi.org/10.1007/s00410-009-0387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0387-4

Keywords

Navigation