Skip to main content
Log in

Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The oxygen isotope geochemistry and chemical composition of clinopyroxene crystals from Alban Hills pyroclastic deposits constrain the petrological evolution of ultrapotassic Roman-type rocks. Volcanic eruptions in the 560–35 ka time interval produced thick pyroclastic deposits bearing clinopyroxene phenocrysts with recurrent chemical characteristics. Clinopyroxenes vary from Si–Mg-rich to Al–Fe-rich with no compositional break, indicating that they were derived from a continuous process of crystal fractionation. Based on the δ18O and trace element data no primitive samples were recovered: monomineralic clinopyroxene cumulates set the oxygen isotope composition of primary magmas in the range of uncontaminated mantle rocks (5.5‰), but their ΣREE composition resulted from extensive crystal fractionation. Departing from these mantle-like δ18OCpx values the effects of crustal contamination of clinopyroxene O-isotope composition were identified and used to monitor chemical variations in the parental magma. δ18O values in Si–Mg-rich clinopyroxene are slightly higher than typical mantle values (5.9–6.2‰), and the low ΣREE contents are representative of early stages of magmatic differentiation. δ18O values as high as 8.2‰ are associated with Al–Fe3+-rich clinopyroxene showing high ΣREE contents. These δ18O values are characteristic of crystals formed during the late magmatic stages of each main eruptive phase. Geochemical modelling of δ18O values vs. trace element contents indicates that these ultrapotassic magmas were derived from fractional crystallization plus assimilation of limited amounts of carbonate wall rocks starting from a primary melt, and from interaction with CO2 derived from country rocks during crystal fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3
Fig. 4a–f
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reducing software for LA-ICP-MS. Mineralogical Association of Canada, Short Course Series 29:239–243

    Google Scholar 

  • Ague JJ (2000) Release of CO2 from carbonate rocks from regional metamorhism of lithologically heterogeneous crust. Geology 28(12):1123–1126

    Article  CAS  Google Scholar 

  • Appora I, Eiler J, Matthews A, Stolper EM (2003) Experimental determination of oxygen isotope fractionations between CO2 vapor and sodamelilite melt. Geochim Cosmochim Acta 67:459–471

    Article  CAS  Google Scholar 

  • Asprey LB (1976) The preparation of very pure F2 gas. J Fluorine Chem 7:359–361

    Article  CAS  Google Scholar 

  • Aurisicchio C, Federico M, Gianfagna A (1988) Clinopyroxene chemistry of the high-potassium suite from the Alban Hills, Italy. Mineral Petrol 39:1–19

    CAS  Google Scholar 

  • Baker CK, Black PM (1980) Assimilation and metamorphism at basalt-limestone contact, Tokatoka, New Zealand. Mineral Mag 43:797–807

    CAS  Google Scholar 

  • Baker JA, Macpherson CG, Menzies MA, Thirlwall MF, Al Kadasi M, Mattey DP (2000) Resolving crustal and mantle contributions to continental flood volcanism, Yemen; constraints from mineral oxygen isotope data. J Petrol 41:1805–1820

    Article  CAS  Google Scholar 

  • Bindeman IN, Valley JW (2002) Oxygen isotope study of the long valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144(2):185–205

    CAS  Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  CAS  Google Scholar 

  • Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts. Part I: bulk solubility data. Chem Geol 174:225–239

    Article  CAS  Google Scholar 

  • Chacko T, Hu X, Mayeda TM, Clayton RN, Goldsmith JR (1996) Oxygen isotope fractionations in muscovite, phlogopite, and rutile. Geochim Cosmochim Acta 60:2595–2608

    Article  CAS  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite; application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  CAS  Google Scholar 

  • Clayton RN, Mayeda TK (1983) Oxygen isotopes in eucrites, shergottites, nakhilites, and chassignites. Earth Planet Sci Lett 62:1–6

    Article  CAS  Google Scholar 

  • Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotasic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222

    Article  CAS  Google Scholar 

  • De Paolo DJ (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  CAS  Google Scholar 

  • De Rita D, Funiciello R, Parotto M (1988) Carta geologica del Complesso vulcanico dei Colli Albani, Progetto Finalizzato ‘Geodinamica’, C.N.R., Rome

    Google Scholar 

  • Dingwell DB (1986) Volatile solubilities in silicate melts. In: Scarfe Ž (ed) A short course in silicate melts. Mineralogical Association of Canada, pp 93–129

    Google Scholar 

  • Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo A, Piromallo C (1999) Orogens and slabs vs. their direction of subduction. Earth Sci Rev 45:167–208

    Article  Google Scholar 

  • Dolfi D, Trigila R (1983) Clinopyroxene solid-solutions and water in magmas: results in the system phonolitic tephrite-H2O. Mineral Mag 47:347–351

    CAS  Google Scholar 

  • Downes H, Thirlwall MF, Trayhorn SC (2001) Miocene subduction-related magmatism in southern Sardinia: Sr±Nd- and oxygen isotopic evidence for mantle source enrichment. J Volcanol Geother Res 106:1–21

    Article  CAS  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variation in basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43:319–364

    CAS  Google Scholar 

  • Eiler JM, Farley KA, Valley JW, Hauri E, Craig H, Hart SR, Stolper EM (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim Cosmochim Acta 61:2281–2293

    Article  CAS  Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75th Anniv:317–391

    Google Scholar 

  • Federico M, Peccerillo A (2002) Mineral chemistry and petrogenesis of the granular ejecta from the Alban Hills volcano (Central Italy). Mineral Petrol 74:223–252

    Article  CAS  Google Scholar 

  • Ferrara G, Laurenzi MA, Taylor HP Jr, Tonarini S, Turi B (1985) Oxygen and strontium isotope studies of K-rich volcanic rocks from the Alban Hills, Italy. Earth Planet Sci Lett 75:13–28

    Google Scholar 

  • Foley SF (1992) Vein-plus-wall rock melting mechanisms in the lithosphere and the origin of potassic rocks. Lithos 28:435–453

    Article  CAS  Google Scholar 

  • Fornaseri M, Scherillo A, Ventriglia U (1963) La regione vulcanica dei Colli Albani. Consiglio Nazionale delle Ricerche, Rome

    Google Scholar 

  • Fortier SM, Giletti BJ (1989) An empirical model for predicting diffusion coefficients in silicate minerals. Science 245:1481–1484

    CAS  Google Scholar 

  • Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, Central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120

    Article  CAS  Google Scholar 

  • Funiciello R, Parotto M (1978) Il substrato sedimentario nell’area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino centrale. Geologica Romana 17:233–287

    Google Scholar 

  • Funiciello R, Giordano G, De Rita D (2003) The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. J Volcanol Geotherm Res 123:43–61

    Article  CAS  Google Scholar 

  • Gaeta M (1998) Petrogenetic implications of Ba-sanidine in the Lionato Tuff (Colli Albani Volcanic District, Central Italy). Mineral Mag 62:697–701

    Article  CAS  Google Scholar 

  • Gaeta M, Freda C (2001) Strontian fluoro-magnesiohastingsite in Alban Hills lavas (Central Italy): crystallization conditions. Mineral Mag 65:787–795

    Article  CAS  Google Scholar 

  • Gaeta M, Fabrizio G, Cavarretta G (2000) F-phlogopites in the Alban Hills Volcanic District (Central Italy): indications regarding the role of volatiles in magmatic crystallization. J Volcanol Geotherm Res 99:179–193

    Article  CAS  Google Scholar 

  • Garlik GD (1966) Oxygen isotope fractionation in igneous rocks. Earth Planet Sci Lett 1:361–368

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental clinopyroxene/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    CAS  Google Scholar 

  • Jolivet L, Faccenna C, Brunet C, Cadet JP, Funiciello R, Mattei M, Rossetti F, Storti F, Goffè B, Theye T (1998) Midcrustal shear zones in orogenic extension: the northern Tyrrhenian Sea case. J Geophys Res 103:12123–12160

    Article  Google Scholar 

  • Karner DB, Marra F, Renne P (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219

    Article  CAS  Google Scholar 

  • Karner DB, Christensen JN, Freda C, Gaeta M, Marra F, Scarlato P (2003) Coherent time-dependent variation 87Sr/86Sr in clinopyroxene from the Alban Hills Volcanic District (Central Italy): clues to source evolution. AGU Fall Meeting, S. Francisco

  • Kohn MJ, Valley JW (1998) Oxygenj isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals. Geochim Cosmochim Acta 62:1947–1958

    Article  CAS  Google Scholar 

  • Kushiro I (1977) Si–Al relation in clinopyroxenes from igneous rocks. Am J Sci 258:548–554

    Google Scholar 

  • Lentz DR (1999) Carbonatite genesis: a re-examination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 27:335–338

    Article  CAS  Google Scholar 

  • Marra F, Freda C, Scarlato P, Taddeucci J, Karner DB, Renne P, Gaeta M, Palladino DM, Trigila R, Cavarretta G (2003) Post-caldera activity in the Alban Hills Volcanic District (Italy): 40Ar/39Ar geochronology and insight into magma evolution. Bull Volcanol 65:227–247

    Google Scholar 

  • Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241

    Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionations involving pyroxenes; the calibration of mineral-pair geothermometers. Geochim Cosmochim Acta 47:631–644

    Article  CAS  Google Scholar 

  • Melzer S, Foley SF (2000) Phase relations and fractionation sequences in potassic magmas series modelled in the system CaMgSi2O6–KAlSiO4–Mg2SiO4–SiO2–F2O− 1 at 1 bar to 18 kbar. Contrib Mineral Petrol 138:186–197

    Article  CAS  Google Scholar 

  • Morimoto N et al (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    CAS  Google Scholar 

  • Mysen BO (1975) Solubility of volatiles in silicate melts at high pressure and temperature; the role of carbon dioxide and water in feldspar, pyroxene, and feldspathoid melts. Carnegie Institution of Washington Year Book, vol 74, pp 454–468

  • Palladino DM, Gaeta M, Marra F (2001) A large k-foiditic hydromagmatic eruption from the early activity of the Alban Hills volcanic District (Italy). Bull Volcanol 63:345–359

    Article  Google Scholar 

  • Peccerillo A (1985) Roman Comagmatic Province (central Italy): evidence for subduction-related magma genesis. Geology 13:103–106

    CAS  Google Scholar 

  • Peccerillo A (1999) Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318

    Article  Google Scholar 

  • Peccerillo A, Poli G, Tolomeo L (1984) Genesis, evolution and tectonic significance of K-rich volcanics from the Alban Hills (Roman comagmatic region) as inferred from trace element geochemistry. Contrib Mineral Petrol 86:230–240

    CAS  Google Scholar 

  • Perini G, Francalanci L, Davidson JP, Conticelli S (2004) Evolution and genesis of magmas from vico volcano, Central Italy: multiple differentiation pathways and variable parental magmas. J Petrol 45:139–182

    Article  CAS  Google Scholar 

  • Rosenbaum JM, Kyser TK, Walker D (1994) High temperature oxygen isotope fractionation in the enstatite-olivine-BaCO3 system. Geochim Cosmochim Acta 58:2653–2660

    Google Scholar 

  • Schmidt KH, Bottazzi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168:287–299

    Article  CAS  Google Scholar 

  • Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076

    CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In: Saunders AD, Norry MG (eds) Magmatism in ocean basins. Geol Soc Spec Publ 42:313–345

    Google Scholar 

  • Taylor HP, Epstein S (1962) Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks. Part 2. Application to petrologic problems. Geol Soc Am Bull 73:675–694

    CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 328 pp

    Google Scholar 

  • Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Mineral Petrol 116:216–224

    CAS  Google Scholar 

  • Tiepolo M, Bottazzi P, Palenzona M, Vannucci R (2003) A laser probe coupled with ICP-double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb dating of zircon. Can Mineral 41:259–272

    CAS  Google Scholar 

  • Trigila R, Agosta E, Currado C, De Benedetti AA, Freda C, Gaeta M, Palladino DM, Rosa C (1995) Petrology. In: Trigila R (ed) The Volcano of the Alban Hills. Università degli Studi di Roma “La Sapienza”, Rome, pp 95–165

    Google Scholar 

  • Turi B (1970) Carbon and oxygen isotopic composition of carbonates in limestone blocks and related geodes from the “Black Pozzolans” formation of the Alban Hills. Chem Geol 5:195–205

    Article  CAS  Google Scholar 

  • Turi B, Taylor HP Jr (1976) Oxygen isotope studies of potassic volcanic rocks of the Roman Province, central Italy. Contrib Mineral Petrol 55:1–31

    CAS  Google Scholar 

  • Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206

    Article  CAS  Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  CAS  Google Scholar 

  • Washington HS (1906) The Roman comagmatic region. Carnegie Institute of Washington Yearbook 56:206–214

    Google Scholar 

  • Watkinson DH, Wyllie PJ (1969) Phase equilibrium studies bearing on the limestone-assimilation hypothesis. Geol Soc Am Bull 80:1565–1576

    CAS  Google Scholar 

  • Widom E, Farquhar J (2003) Oxygen isotope signatures in olivines from Sao Miguel (Azores) basalts: implications for crustal and mantle processes. Chem Geol 193:237–255

    Article  CAS  Google Scholar 

  • Wood BJ, Blundy JD (2002) The effect of H2O on crystal-melt partitioning of trace elements. Geochim Cosmochim Acta 66:3647–3656

    Article  CAS  Google Scholar 

  • Wood BJ, Trigila R (2001) Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem Geol 172:213–223

    Article  CAS  Google Scholar 

  • Wyllie PJ (1965) Melting relationships in the system CaO-MgO-CO2–H2O, with petrological applications. J Petrol 6:101–123

    CAS  Google Scholar 

  • Zhao ZF, Zheng YF (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to G. Andreozzi, G. Cavarretta, M.L. Frezzotti, A. Peccerillo, Z.D. Sharp, and R. Trigila for helpful discussions, M. Mola, M. Serracino, and M. Tiepolo for stable isotope, microprobe and LAM-ICPMS assistance, respectively, M. Albano for graphic assistance. Research was funded by the Italian CNR (Consiglio Nazionale delle Ricerche) and MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dallai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallai, L., Freda, C. & Gaeta, M. Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral Petrol 148, 247–263 (2004). https://doi.org/10.1007/s00410-004-0602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0602-2

Keywords

Navigation