Skip to main content
Log in

Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A recently discovered dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia, dated at 624 ± 3 Ma, contains xenoliths of calcite-bearing dolomite carbonatite with graphite spherulites. Apatite and aegirine are the other rock-forming minerals. Chemically the carbonatites are ferrocarbonatite and ferruginous calciocarbonatite. The graphite forms <1 mm up to 1.5 mm diameter spherulites, with Raman spectra similar to published spectra of microcrystalline, amorphous carbon and disordered graphite, with G and D bands at 1,580−1,600 cm−1 and at around 1,350 cm−1. Alteration has formed Fe-bearing calcite to Ca-bearing siderite compositions not previously reported in nature around the graphite along cracks and fractures. Mineral and stable isotope geothermometers and melt inclusion measurements for the carbonatite all give temperatures of 700°–900°. It is concluded that the graphite precipitated from the ferrocarbonatite magma. There are three candidates to control the precipitation of graphite (a) a redox reaction with FeII in the magma, (b) potential presence of organics in the magma (c) seeding of, or dissolution in, the magma of graphite/diamond from the mantle, and further work is required to identify the most important mechanism(s). Graphite in carbonatite is rare, with no substantial published accounts since the 1960s but graphite at other localities seems also to have precipitated from carbonatite magma. The precipitation of reduced carbon from carbonatite provides further evidence that diamond formation in carbonate melts at high mantle pressures is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaishi M, Kanda H, Yamaoka S (2000) Crystallization of diamond from C-O-H fluids under high-pressure and high-temperature conditions. J Cryst Growth 209:999–1003

    Google Scholar 

  • Alberti A, Castorina F, Censi P, Comin-Chiaramonti P, Gomes CB (1999) Geochemical characteristics of Cretaceous carbonatites from Angola. J Afr Earth Sci 29:735–759

    Google Scholar 

  • Bell K, Blenkinsop J (1989) Nd and Sr isotope geochemistry of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 278–300

    Google Scholar 

  • Bobrov AV, Litvin YuA, Divaev FK (2004) Phase relations and diamond synthesis in the carbonate of the Chagatai complex, Western Uzbekistan: results of P=4–7 GPa and T=1200–1700C. Geochem Int 42:39–48

    Google Scholar 

  • Cartigny P, De Corte K, Shatsky VS, Ader M, De Paepe P, Sobolev NV, Javoy M (2001) The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chem Geol 176:265–281

    Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmidth JR (1989) Oxygen isotope fractionations involving diopside, forsterite and calcite: applications to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Google Scholar 

  • Deines P (1989) Stable isotope variation in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 301–359

    Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278

    Google Scholar 

  • Demény A, Ahijado A, Casillas R, Vennemann, TW (1998) Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a C, O, H isotope study. Lithos 44:83–151

    Google Scholar 

  • Demény A, Sitnikova MA, Karchevsky PI (2004) Stable C and O isotope compositions of carbonatite complexes of the Kola Alkaline Province: phoscorite-carbonatite relationships and source compositions. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 407–431

    Google Scholar 

  • Djuraev AD, Divaev FK (1999) Melanocratic carbonatites—new type of diamondbearing rocks, Uzbekistan. In: Stanley CJ et al (eds) Mineral deposits: processes to processing. Balkena, Rotterdam 1, pp 639–642

    Google Scholar 

  • Dobretsov NL, Bulgatov AN (1991) Geodynamic map of Transbaikalia (concepts of preparation and legend) (in Russian). United Institute of Geology, Geophysics and Mineralogy and the Buryat Geological Institute SB RAS, Novosibirsk, p 51

  • Doroshkevich AG, Ripp GS (2004) The composition of magmas and fluids of carbonatite complexes of the Transbaikalia: data on study of inclusions. Extended abstracts of the interim IAGOD conference “Metallogeny of the Pacific Northwest (Russian Far East): tectonics, magmatism and metallogeny of active continental margins”, Vladivostok, pp 288–292

  • Doroshkevich AG, Wall F, Ripp GS (2006) Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and a discussion of the significance of their Cr-rich xenoliths. Mineral Petrol

  • Dunworth EA, Bell K (2001) The Turiy Massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Petrol 42:377–405

    Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, New York, p 589

    Google Scholar 

  • Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64:075414-1–075414-13

    Google Scholar 

  • French BM, Rosenberg PE (1965) Siderite (FeCO3): thermal decomposition in equilibrium with graphite. Science 147:1283

    Google Scholar 

  • Gellantly DC (1966) Graphite in natural and experimental carbonate systems. Mineral Mag 35:936–970

    Google Scholar 

  • Gittins J, Harmer RE (1997) What is ferrocarbonatite? A revised classification. J Afr Earth Sci 25:159–168

    Google Scholar 

  • Goldschmidt JR, Graf DL, Witters J, Northrop DA (1962) Studies in the system CaCO3-MgCO3-FeCO3: 1 Phase relations, 2 A method for major-element spectrochemical analysis, 3 Composition of some ferroan dolomites. J Geol 70:659–690

    Google Scholar 

  • Harmer RE, Lee CA, Eglington BM (1998) A deep mantle source for carbonatite magmatism: evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe. Earth Planet Sci Lett 158:131–142

    Google Scholar 

  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32:845–848

    Google Scholar 

  • Karchevsky PI, Moutte J (2004) The phoscorite-carbonatite complex of Vuorijarvi, Kola Peninsula. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 163–199

    Google Scholar 

  • Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. IAVCEI Proceedings in Volcanology, vol 4. Springer, Berlin Heidelberg New York, pp 113–123

  • Krasnova NI, Petrov TG, Balaganskaya EG, Garcia D, Moutte J, Zaitsev AN, Wall F (2004) Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 43–72

    Google Scholar 

  • Kravtsov AI, Bobrov VA, Kropotkova OI (1981) Geochemistry of carbon of gases from kimberlites (in Russian). Abstracts of All-Union Symposium on geochemistry of carbon, Moscow, pp 73–76

  • Krivdik SG (2001) Alkaline magmatism of Ukraine shield. In: Vladykin NV (ed) Alkaline magmatism and the problem of mantle sources. Publishing house of the Institute of Geography SB RAS, Irkutsk, pp 46–58

    Google Scholar 

  • Lee MJ, Garcia D, Moutte J, Williams CT, Wall F (2004) Carbonatites and phoscorites from the Sokli Complex, Finland. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 129–158

    Google Scholar 

  • Litvin YuA (1998) Hot spots of mantle and experiment to 10 GPa: alkaline reactions, lithosphere carbonatization, and new diamond-generating systems. Russ Geol Geophys 39:1760–1768

    Google Scholar 

  • Litvin YuA, Zharikov VA (2000) Experimental modelling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570 °C. Dokl Earth Sci 373:867–871

    Google Scholar 

  • Litvin YuA, Chudinovskikh LT, Sapari GV, Obyden SK, Chukichev MV, Vavilov VS (1999) Diamonds of new alkaline carbonate–graphite HP syntheses: SEM morphology, CCL-SEM and CL spectroscopy studies. Diamond Relat Mater 8:267–272

    Google Scholar 

  • Lugovaya IP, Lapin AV, Krivdik SG (1980) A role of isotopic data for condition of formation of carbonatite complexes (in Russian). Abstracts of VIII All-Union Symposium on stable isotopes in geochemistry, pp 84–85

  • Luth RW (1993) Diamond, eclogites, and the oxidation state of the Earth’s mantle. Science 261:66–68

    Google Scholar 

  • Mourtada S, Le Bas MJ, Pin C (1997) Petrogenesis of Mg-carbonatites from Tamazert in the Moroccan High Atlas. CR Acad Sci II A 325:559–564

    Google Scholar 

  • Nielsen TFD, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallized melt inclusions, Gardiner complex. Contrib Mineral Petrol 126:331–344

    Google Scholar 

  • Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418

    Google Scholar 

  • Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (2002) Diamond formation through carbonate-silicate interaction. Am Mineral 87:1009–1013

    Google Scholar 

  • Panina LI (2005) Multiphase carbonate-salt immiscibility in carbonate melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib Mineral Petrol 150:19–36

    Google Scholar 

  • Pasteris JD, Wopenka B (1991) Raman spectra of graphite as indicator of degree of metamorphism. Can Mineral 29:1–9

    Google Scholar 

  • Pearson DG, Davies GR, Nixon PH, Milledge HJ (1989) Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 338:60–62

    Google Scholar 

  • Ripp GS, Badmatsyrenov MV, Doroshkevich AG (2003) Mineral composition and geochemical features of the Pogranichnoe carbonatites (North Transbaikalia). In: Vladykin NV (ed) Plumes and problems of deep sources of alkaline magmatism (in Russian). Publishing house of the Institute of Geography SB RAS, Irkutsk, pp 88–108

    Google Scholar 

  • Ripp GS, Badmatsyrenov MV, Doroshkevich AG, Isbrodin IA (2004) Mineral composition and geochemical features of the Veseloe carbonatites (North Transbaikalia, Russia). In: Vladykin NV (ed) Plumes and problems of deep sources of alkaline magmatism. Publishing house of the Institute of Geography SB RAS, Irkutsk, pp 257–273

    Google Scholar 

  • Ripp GS, Badmatsyrenov MV, Doroshkevich AG, Isbrodin IA (2005) New carbonatite-bearing area in Northern Transbaikalia. Petrology 13:489–498

    Google Scholar 

  • Ripp GS, Karmanov NS, Doroshkevich AG, Badmatsyrenov MV, Izbrodin IA (2006) Chrome-bearing mineral phases in the carbonatites of Northern Transbaikalia. Geochem Int 44:395–403

    Google Scholar 

  • Rosenberg PE (1963) Subsolidus relations in the system CaCO-FeCO3. Am J Sci 261:683–690

    Google Scholar 

  • Santos RV, Clayton RN (1995) Variations of oxygen and carbon isotopes in carbonatites: a study of Brazilian alkaline complexes. Geochim Cosmochim Acta 59:1339–1352

    Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771

    Google Scholar 

  • Spivak AV, Litvin YuA (2004) Diamond syntheses in multicomponent carbonate-carbon melts of natural chemistry: elementary processes and properties. Diam Rel Mat 13:482–487

    Google Scholar 

  • Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden. Geochim Cosmochim Acta 31:407–430

    Google Scholar 

  • Thompson RN, Smith PM, Gibson SA, Mattey DP, Dickin AP (2002) Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contrib Mineral Petrol 143:377–396

    Google Scholar 

  • Verwoerd WJ (1967) The carbonatites of South Africa and South West Africa. Handb GSSA 6:251–252

    Google Scholar 

  • Vladykin NV, Morikiyo T, Miyazaki T (2004) Geochemistry of carbon and oxygen isotopes in carbonatites of Siberia and Mongoliya and some gedynamic consequences. In: Vladykin NV (ed) Deep-seated magmatism, its sources and their relation to plume processes. Publishing House of the Institute of Geography SB RAS, Irkutsk, pp 96–112

    Google Scholar 

  • Vrublevskii VV, Pokrovskii BG, Zhuravlev DZ, Anoshin GN (2003) Composition and age of the penchenga linear carbonatite complex, Yenisei range. Petrology 11:130–147

    Google Scholar 

  • Wada H, Suzuki K (1983) Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures. Geochim Cosmochim Acta 47:697–706

    Google Scholar 

  • Wall F (2000) Mineral chemistry and petrogenesis of rare earth-rich carbonatites with particular reference to the Kangankunde carbonatite, Malawi. PhD Thesis, University of London, p 340

  • Wall F, Zaitsev AN, Mariano AN (2001) Rare earth pegmatites in carbonatites. J Afr Earth Sci 32:A35–A36

    Google Scholar 

  • Weidner JR, Tuttle OF (1965) Stability of siderite, FeCO3. Geol Soc Am Spec Pap 82:220

    Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical composition and element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–46

    Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

  • Worley BA, Cooper AF (1995) Mineralogy of the Dismal Nepheline Syenite, Southern Victoria Land, Antarctica. Lithos 35:109–128

    Google Scholar 

  • Worley BA, Cooper AF, Hall CE (1995) Petrogenesis of carbonate-bearing nepheline syenites and carbonatites from Southern Victoria Land, Antarctica: origin of carbon and the effects of calcite-graphite equilibrium. Lithos 35:183–199

    Google Scholar 

  • Zagnitko VN, Lugovaya IP, Proskurko LI (1980) Features of graphite from Ukraine on isotopic data (in Russian). Abstracts of Soviet-Union Symposium on stable isotopes in geochemistry, pp 314–315

  • Zuilen MA, Lepland A, Teranes J, Finarelli J, Wahlen M, Arrhenius G (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res 126:331–348

    Google Scholar 

Download references

Acknowledgments

We are grateful to Tony Wighton, John Spratt, Anton Kearsley and Terry Williams for help with analysis at the NHM (UK), Nikolay Karmanov and Sergey Kanakin for help with analysis at the Geological Institute SB RAS (Russia), Professor A.H. Rankin and Ms B. Beeskow for using the laser Raman equipment at Kingston University, UK. Ken Bailey, Alan Woolley, Ilya Veksler are thanked for useful discussions and information. Chris Stanley, Andy Fleet and Polly Hutchison helped to improve the text. Reviews by Keith Bell and an anonymous reviewer much improved the paper. The studies have been carried out with the support of the RFFR (grant 03-05-65270), Russian Science Support Foundation, Fund of Leading Scientific Schools of Russian Federation (NSch-2284.2003), a Royal Society (UK) incoming international short visit and INTAS grant 05-1000008-7938. This paper contributes to the list of ‘CERCAMS’ publications from The Natural History Museum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wall.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doroshkevich, A.G., Wall, F. & Ripp, G.S. Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia. Contrib Mineral Petrol 153, 339–353 (2007). https://doi.org/10.1007/s00410-006-0150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0150-z

Keywords

Navigation