Skip to main content
Log in

Jurassic ophiolites within the Valais domain of the Western and Central Alps: geochronological evidence for re-rifting of oceanic crust

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Metabasic rocks from different parts of the Antrona ophiolites, Western Alps, as well as from the Misox zone, Central Alps, were dated using ion microprobe (SHRIMP) U-Pb analyses of zircon, in association with cathodoluminescence (CL) imaging. HP metamorphism must have affected at least the major part of the Antrona ophiolites, although HP relics are rarely preserved, probably due to the Lepontine metamorphic overprint. HP metamorphism has affected also the area of the Misox zone. The origin of the Antrona ophiolites is arguable. They were interpreted as part of both the Piemont–Ligurian (PL) and the Valais ocean, the two main oceans in the area of the Alps before Alpine convergence. SHRIMP-analyses of co-magmatic zircon domains from the Antrona ophiolites (Guggilihorn, Passo del Mottone and Quarata areas) yielded identical (within uncertainty) weighted mean 206 Pb/238U ages of 155.2±1.6 Ma, 158±17 Ma (or 163.1±2.4 Ma: one analysis; 1σ error) and 155.6±2.1 Ma, respectively, interpreted as the time of crystallization of the magmatic protoliths. These Late Jurassic ages fit well to the time span considered for the formation of Piemont–Ligurian oceanic crust. The metagabbro of the Misox zone (Hinterrhein area), for which a Valaisan origin is generally accepted, gave also a Late Jurassic, PL protolith age of 161.0±3.9 Ma. The metamorphic zircon domains from the amphibolitized eclogite of Mottone yielded an age of 38.5±0.7 Ma, interpreted as the time of HP metamorphism. This age is in good agreement with the time of metamorphism reported from previous zircon SHRIMP-data for eclogites and amphibolites of other parts in the Valais domain. In order to bring in line the PL protolith ages with the Valaisan metamorphic ages, we suggest a scenario involving emplacement of part of the PL oceanic crust to the north of the newly formed Briançonnais peninsula, inside the Valais geotectonic domain. This paleotectonic configuration was probably established when younger Valaisan oceanic crust formed by spreading and re-rifting, partly within PL oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amato JM, Johnson CM, Baumgartner LP, Beard BL (1999) Rapid exhumation of the Zermatt-Saas ophiolite deduced from high-precision Sm-Nd and Rb-Sr geochronology. Earth Planet Sci Lett 171:425–438

    Google Scholar 

  • Cartwright I, Barnicoat, AC (2002) Petrology, geochronology and tectonics of shear zones in the Zermatt-Saas and Combin zones of the Western Alps. Jour Metam Geol 20:263–281

    Google Scholar 

  • Colombi A (1989) Metamorphisme et geochimie des roches mafiques des Alpes ouest-centrales (geoprofil Viege-Domodossola-Locarno). Mémoires de Géologie, Lausanne 4:216

    Google Scholar 

  • Colombi A, Pfeifer HR (1986) Ferrogabbroic and basaltic meta-eclogites from the Antrona mafic-ultramafic complex and the Centovalli-Locarno region (Italy and southern Switzerland)- First results. Schweiz Mineral Petrogr Mitt 66:99–110

    Google Scholar 

  • Compston W, Williams IS, Kirschvink JL, Zichao Z, Guogan M (1992) Zircon U-Pb ages for the Early Cambrian time-scale. Jour Geol Soc London 149:171–184

    Google Scholar 

  • Cumming GL, Richards GR (1975) Ore lead isotope ratios in a continuously changing Earth. Earth Planet Sci Lett 28:155–171

    Article  CAS  Google Scholar 

  • De Wever P, Baumgartner PO (1995) Radiolarians from the base of the Supra-ophiolitic Schistes Lustrés formation in the Alps (Saint-Véran, France and Traversiera Massif, Italy). In: Baumgartner PO, ÓDogerthy L, Gorican S, Urquhart E, Pillevuit A, De Wever P (eds) Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: occurrences, systematics, biochronology. Mém Géol (Lausanne) 23:725-730

  • Escher A, Hunziker J-C, Marthaler M, Masson H, Sartori M, Steck A (1997) A Geologic framework and structural evolution of the western Swiss-Italian Alps. In: Pfiffner OA, Lehner P, Heitzmann PZ, Mueler S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP 20. Birkhäuser, Basel, pp 205–221

    Google Scholar 

  • Florineth D, Froitzheim N (1994) Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubünden, Switzerland): evidence for Early Cretaceous opening of the Valais ocean. Schweiz Mineral Petrogr Mitt 74:134–137

    Google Scholar 

  • Frey M, Ferreiro-Mählmann R (1999) Alpine metamorphism of the Central Alps. Schweiz Mineral Petrogr Mitt 79:135–154

    Google Scholar 

  • Frisch W (1979) Tectonic progradation and plate tectonic evolution of the Alps. Tectonophysics 60:121–139

    Google Scholar 

  • Froitzheim N (2001) Origin of the Monte Rosa nappe in the Pennine Alps—a new working hypothesis. Geol Soc Amer Bull 113:604-614

    Google Scholar 

  • Froitzheim N, Schmid SM, Frey M (1996) Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps: a working hypothesis. Eclogae geol Helv 89:81–110

    Google Scholar 

  • Gansser A (1937) Der Nordrand der Tambodecke. Schweiz Mineral Petrogr Mitt 17:291–522

    Google Scholar 

  • Gebauer D (1996) A P-T-t path for an (ultra?-) high-pressure ultramafic/mafic rock association and its country rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps) In: Earth processes: reading the isotopic code. Geophys Monogr 95:107–111

    Google Scholar 

  • Gebauer D (1999) Alpine geochronology of the Central and Western Alps: new constraints for a complex geodynamic evolution. Schweiz Mineral Petrogr Mitt 79:191–208

    Google Scholar 

  • Gebauer D, Schertl H-P, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:35–24

    Google Scholar 

  • Heinrich CA (1983) Die regionale Hochdruckmetamorphose der Aduladecke, Zentralalpen, Schweiz. Dissertation, ETH Nr 7282, 213 pp

  • Hellman PL, Green TH (1979) The role of sphene as an accessory phase in the high-pressure partial melting of hydrous mafic compositions. Earth Planet Sci Lett 42:191–201

    Google Scholar 

  • Jäger E (1973) Die Alpine Orogenese im Lichte der radiometrischen Altersbestimmung. Eclogae Geol Helv 66:11–21

    Google Scholar 

  • Keller LM, Schmid SM (2001) On the kinematics of shearing near the top of the Monte Rosa nappe and the nature of the Furgg zone in Val Loranco (Antrona valley, N Italy): tectono-metamorphic and paleogeographical consequences. Schweiz Mineral Petrogr Mitt 81:347–367

    Google Scholar 

  • Lapen TJ, Johnson CM, Baumgartner LP, Mahlen NJ, Beard BL, Amato JM (2003) Burial rates during prograde metamorphism of an ultra-high-pressure terrane: an example from Lago di Cignana, western Alps, Italy. Earth Planet Sci Lett 215:57–72

    Google Scholar 

  • Liati A, Gebauer D (1999) Constraining the prograde and retrograde P-T-t path of Eocene HP-rocks by SHRIMP dating of different zircon domains: inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib Mineral Petrol 135:340–354

    Google Scholar 

  • Liati A, Gebauer D (2001) U-Pb SHRIMP-dating of zircon domains from eclogites of Antrona (Western Alps): evidence for a Valais ocean origin. EUG 11, Journal of Conference Abstracts 6:600

    Google Scholar 

  • Liati A, Gebauer D (2003) Geochronological constraints for the time of metamorphism in the Gruf Complex (Central Alps) and implications for the Adula-Cima Lunga nappe system. Schweiz Minetral Petrogr Mitt 83:159–172

    Google Scholar 

  • Liati A, Gebauer D, Froitzheim N (2002) Late Cretaceous basic oceanic magmatism in the Valais ocean, Western and Central Alps: geochronological evidence and paleogeographic implications. Annual Meeting of the Swiss Academy of Natural Sciences, Davos, Abstract volume, p 26

  • Liati A, Gebauer D, Fanning CM (2003) The youngest basic oceanic magmatism in the Alps (Late Cretaceous; Chiavenna unit; Central Alps): geochronological constraints and geodynamic significance. Contrib Mineral Petrol 146:144–158

    Google Scholar 

  • Ludwig K (2000) User’s Manual for Isoplot/Ex, version 2.4. A geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication No. 1a, 53 pp

  • Marquer D, Mercolli I, Peters T (1998) Early Cretaceous intra-oceanic rifting in the Proto-Indian Ocean recorded in the Masirah Ophiolite, Sultanate of Oman. Tectonophysics 292:1–16

    Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite and quartz. Contrib Mineral Petrol 96: 212–224

    CAS  Google Scholar 

  • Oberhänsli R (1986) Blue amphiboles in metamorphosed Mesozoic mafic rocks from the Central Alps. Geol Soc Amer Memoir 164:239–247

    Google Scholar 

  • Oberhänsli R (1994) Subducted and obducted ophiolites of the Central Alps: Paleotectonic implications deduced by their distribution and metamorphic overprint. Lithos 33:109–118

    Google Scholar 

  • Paces JB, Miller JD (1993) Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98:13997–14013

    CAS  Google Scholar 

  • Pfeiffer HR, Colombi A, Ganguin J (1989) Zermatt-Saas and Antrona zone: a petrographic and geochemical comparison of polyphase metamorphic ophiolites of the West-Central Alps. Schweiz Mineral Petrogr Mitt 69:217–236

    CAS  Google Scholar 

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull 97:1037–1053

    Google Scholar 

  • Pleuger J, Hundenborn R, Kremer K, Babinka S, Kurz W, Jansen E, Froitzheim N (2003) Structural evolution of Adula nappe, Misox zone, and Tambo nappe in the San Bernardino area: Constraints for the exhumation of the Adula eclogites. Mitt Österr Geol Ges 94:99–122

    Google Scholar 

  • Ring U (1992) The Alpine geodynamic evolution of Penninic nappes in the eastern Central Alps: geothermobarometric and kinematic data. J Metamorphic Geol 10:33–53

    Google Scholar 

  • Rubatto D, Gebauer D (1999) Eo/Oligocene (35 Ma) high-pressure metamorphism in the Gornergrat Zone (Monte Rosa, Western Alps): implications for paleogeography. Schweiz Mineral Petrogr Mitt 79:353–362

    Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implication for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187

    Article  CAS  Google Scholar 

  • Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas Fee ophiolites: implications for the geodynamic evolution of the Central and Western Alps. Contrib Mineral Petrol 132:269–287

    Article  CAS  Google Scholar 

  • Rubatto D, Liati A, Gebauer D (2003) Dating UHP metamorphism. EMU Note Mineral 5:341–363

    Google Scholar 

  • Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064

    Article  Google Scholar 

  • Sommerauer J (1974) Trace elements distribution patterns and mineralogical stability of zircons—an application for combined electron microprobe techniques. Electron Microsc Soc Southern Africa, Proc 4:71–72

    Google Scholar 

  • Stampfli GM (1993) Le Briançonnais, terrain exotique dans les Alpes?. Eclogae Geol Helv 86:1–45

    Google Scholar 

  • Stampfli GM, Mosar J, Marquer D, Marchant R, Baudin T, Borel G (1998) Subduction and obduction processes in the Swiss Alps. Tectonophysics 296:159–204

    Article  Google Scholar 

  • Steck A, Epard J-L, Escher A, Gouffon Y, Masson H (2001) Carte tectonique des Alpes de Suisse occidentale et des régions avoisinantes, 1:100,000, Notice explicative. Office fédéral des eaux et de la géologie. Bern, Switzerland, p 73

    Google Scholar 

  • Stern R (1997) The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. In: Radiogenic Age and isotope studies: Report 10; Geological Survey of Canada, Current research, p 1–31

  • Stern RA, Amelin Y (2003) Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem Geol 197:111–142

    Google Scholar 

  • Tera F, Wasserburg GJ (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  CAS  Google Scholar 

  • Tollmann A (1977) Geologie von Österreich—Band 1. Deuticke, Vienna, 766 pp

    Google Scholar 

  • Tollmann A (1985) Geologie von Österreich—Band 2. Deuticke, Vienna, 710 pp

    Google Scholar 

  • Trommsdorff, V (1966) Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz Mineral Petrogr Mitt 46:431–460

    Google Scholar 

  • Trümpy R (1980) Geology of Switzerland, a guide book Part A: An outline of the geology of Switzerland. Scweiz Geol Komm, Wepf and Co, Basel, 104 pp

    Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404

    Article  CAS  Google Scholar 

  • Wenk E (1956) Die lepontinische Gneissregion und die jungen Granite der Valle della Mera. Eclogae geol Helv 49:251–265

    Google Scholar 

  • Williams IS (1998) U-Th-Pb Geochronology by Ion Microprobe. In: McKibben MA, Shanks III WC and Ridley WI (eds): Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology 7:1–35

    Google Scholar 

Download references

Acknowledgments

We appreciate very much the help of M. Hamilton, R. Stern, N. Rayner and W. Davis during various stages of the SHRIMP work at the Geological Survey of Canada, Ottawa. D. Gebauer, ETH Zurich, contributed substantially with discussions and remarks on an early draft of the manuscript. Many thanks also to P. Meyer, Heidelberg, for his help with the microprobe analyses. We acknowledge the constructive review by K. Mezger, Münster, and R. Oberhänsli, Potsdam. Many thanks also to W. Schreyer, Bochum, for the editorial support. This study was supported by a grant of the Swiss National Science Foundation (20-63767.00). The work of NF was supported by the “Deutsche Forschungsgemeinschaft”, grant Nr. FR700/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthi Liati.

Additional information

Communicated by W. Schreyer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liati, A., Froitzheim, N. & Fanning, C.M. Jurassic ophiolites within the Valais domain of the Western and Central Alps: geochronological evidence for re-rifting of oceanic crust. Contrib Mineral Petrol 149, 446–461 (2005). https://doi.org/10.1007/s00410-005-0658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0658-7

Keywords

Navigation