Skip to main content
Log in

Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm–Nd and Lu–Hf isotope analyses of the Sandvik ultramafic body, Norway

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Combined Sm–Nd and Lu–Hf age and isotope data indicate that Mg- and Cr-rich ultramafic rocks at Sandvik, Western Gneiss Region (WGR), Norway, originated from depleted Archean lithospheric mantle that was chemically and physically modified in Middle Proterozoic time. The Sandvik outcrop consists of garnet peridotite and garnet-olivine pyroxenite and thin garnet pyroxenite layers. These contain two principal mineral assemblages: an earlier porphyroclastic assemblage of grt + opx + cpx ± ol (1,200–1,000°C, 40–50 kbar) and a later kelyphitic assemblage of grt + spl + am ± opx ± ol (700–750°C; 12–18 kbar). A CHUR Hf model age indicates a period of melt extraction at ca. 3.3 Ga for garnet peridotite, reflecting extremely high Lu/Hf ratios and very radiogenic present-day 176Hf/177Hf (εHf=+2,165). Lu–Hf garnet-cpx-whole rock ages of two olivine-bearing samples (garnet peridotite and garnet-olivine pyroxenite) from the outcrop are ca. 1,255 Ma, whereas two olivine-free garnet pyroxenites yield Lu–Hf ages of ca. 1,185 Ma. All Sm–Nd garnet-cpx-whole rock ages of these samples are significantly younger (ca. 1,150 Ma for garnet peridotite and ca. 1,120 Ma for garnet pyroxenite). The isotope systematics indicate that the Lu–Hf ages represent cooling from an earlier period of formation/recrystallization for garnet peridotite whereas they probably reflect formation/recrystallization ages of the garnet pyroxenite. The Sm–Nd ages and isotope systematics of the garnet peridotite samples are consistent with an episode of LREE metasomatism, perhaps facilitated by a fluid of carbonatitic composition that strongly decoupled Sm–Nd and Lu–Hf. The Sm–Nd ages of the garnet pyroxenite may represent either LREE metasomatism or cooling, and, like the peridotites, Lu–Hf ages are older than Sm–Nd ages. The age data, as well as the inferred Nd isotope composition of the fluid that affected the olivine-bearing samples, suggest that these rocks were not in contact during the LREE metasomatic event. Moreover, the pyroxenite layers cannot have been emplaced as magmas into the host peridotite. The pyroxenite layers are interpreted to be tectonically juxtaposed with the host olivine-bearing samples sometime after 1,150 Ma but before development of kelyphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF, and (ρz) procedures. In: Newbury DE (eds) Microbeam analyses, Proceedings of the 23rd annual conference of the microbeam analysis society. San Francisco Press, San Francisco, pp. 239–246

  • Becker H (1996) Geochemistry of garnet peridotite massifs from lower Austria and the composition of deep lithosphere beneath a Paleozoic convergent plate margin. Chem Geol 134:49–65

    Article  Google Scholar 

  • Beyer EE, Brueckner HK, Griffin WL, O’Reilly SY, Graham S (2004) Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology 32:609–612

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bodinier J-L, Menzies MA, Shimizu N, Frey FA, McPherson E (2004) Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. J Petrol 45:299–320

    Article  Google Scholar 

  • Brueckner HK, Blusztajn J, Bakon-Czubarow N (1996) Trace element and Sm–Nd ‘age’ zoning in garnets from peridotites of the Caledonian and Variscan mountains and tectonic implications. J Meta Geol 14:61–73

    Article  Google Scholar 

  • Brueckner HK, Carswell DA, Griffin WL (2002) Paleozoic diamonds within a Precambrian peridotite lens in UHP gneisses of the Norwegian Caledonides. Earth Planet Sci Lett 203:805–816

    Article  Google Scholar 

  • Brueckner HK, Medaris LG (2000) A general model for the intrusion and evolution of “mantle” garnet peridotites in high-pressure and ultrahigh-pressure metamorphis terranes. J Meta Geol 18:123–133

    Article  Google Scholar 

  • Carswell DA (1981) Clarification of the petrology and occurrence of garnet lherzolites, garnet websterites and eclogite in the vicinity of Rødhaugn, Almklovdalen, West Norway. Norsk Geologisk Tidskrift 61:249–260

    Google Scholar 

  • Carswell DA (1986) The metamorphic evolution of Mg-Cr type Norwegian garnet peridotites. Lithos 19:279–297

    Article  Google Scholar 

  • Carswell DA, Cuthbert SJ (2003) Review of the mineralogical and microstructural evolution of ultrahigh-pressure eclogites in the Western Gneiss Region of Norway: in the Alice Wain Memorial Western Norway Eclogite Field Symposium, NGU Report 2003.055

  • Carswell DA, Harley SL (1990) Mineral barometry and thermometry. In: Carswell DA (ed) Eclogite facies focks, pp 83–109

  • Carswell DA, Harvey MA, Al-Samman A (1983) The petrogenesis of contrasting Fe-Ti and Mg-Cr garnet peridotite types in the high grade gneiss complex of Western Norway. Bull Minér 106:727–750

    Google Scholar 

  • Cuthbert SJ, Carswell DA (1990) Formation and exhumation of medium-temperature eclogites in the Scandinavian Caledonides: In: Carswell DA (ed) Eclogite facies rocks, pp 181–203

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Miner Petrol 40:259–274

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New York, p 589

    Google Scholar 

  • Ganguly J, Tirone M (1999) Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion: theoretical formulation and applications. Earth Planet Sci Lett 170:131–140

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53:165–187

    Article  Google Scholar 

  • Griffin WL, Austerheim H, Brastad K, Bryhni I, Krill AG, Krogh EJ, Mørk MBE, Qvale H, Torudbakken B (1985) High-pressure metamorphism in the Scandinavian Caledonides. In: Sturt B, Gee D (eds) The Caledonian orogen. Wiley, New York, pp 783–801

    Google Scholar 

  • Hornig-Kjarsgaard I (1998) Rare earth elements in Sövitic carbonatites and their mineral phases. J Petrol 39:2105–2121

    Article  Google Scholar 

  • Irving AI, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1202–1221

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Nd and Sr isotopes of the Norwegian garnet peridotites and eclogites. EOS 61:389

    Google Scholar 

  • Jamtveit B, Carswell DA, Mearns EW (1991) Chronology of the high-pressure metamorphism of Norwegian garnet peridotites/pyroxenites. J Meta Geol 9:125–139

    Article  Google Scholar 

  • Johnson CM, Beard BL (1993) Evidence from hafnium isotopes for ancient sub-oceanic mantle beneath the Rio Grande rift. Nature 362:441–444

    Article  Google Scholar 

  • Jordan TH, (1978) Composition and development of the continental tectosphere. Nature 274:544–548

    Article  PubMed  Google Scholar 

  • Kelemen PB, Dick JB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Article  Google Scholar 

  • Kennedy AK, Lofgren GE, Wasserburg GJ (1993) An experimental study of trace element partitioning between olivine, orthopyroxene, and melt in chondrules: equilibrium values and kinetic effects. Earth Planet Sci Lett 115:177–195

    Article  Google Scholar 

  • Krogh EJ, Carswell DA (1995) HP and UHP eclogites and garnet peridotites in the Scandinavian Caledonides. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, pp 244–299

    Google Scholar 

  • Lapen TJ, Johnson CM, Baumgartner LP, Mahlen NJ, Beard BL, Amato JM (2003) Burial rates during prograde metamorphism of an ultra-high pressure terrane: an example from Lago di Cignana, Western Alps, Italy. Earth Planet Sci Lett 215:57–72

    Article  Google Scholar 

  • Lapen TJ, Mahlen NJ, Johnson CM, Beard BL (2004) High precision Lu and Hf isotope analyses of both spiked and unspiked samples: a new approach. Geochem Geophys Geosyst. DOI 10.1029/2003GC000582

  • Lappin MA, Smith DC (1978) Mantle-equilibrated orthopyroxene eclogite pods from the Basal Gneisses in the Selje District , western Norway. J Petrol 19:530–584

    Google Scholar 

  • Ludwig KR (2001) User’s manual for Isoplot/Ex rev.2.49, a geochronological toolkit for Microsoft Excel. Berkleley Geochronology Center Special Pub: 1a, pp 59

  • Mearns EW (1986) Sm–Nd ages for Norwegian garnet peridotite. Lithos 19:269–278

    Article  Google Scholar 

  • Mearns EW, Lappin MA (1982) A Sm–Nd isotopic study of ‘internal’ and ‘external eclogites,’ garnet lherzolite and grey gneiss from Almklovdalen, western Norway. Terra Cognita 2:324–325

    Google Scholar 

  • Medaris LG (1980) Petrogenesis of the Lien peridotite and associated eclogite, Almklovdalen, western Norway. Lithos 12:339–353

    Article  Google Scholar 

  • Medaris LG (1984) A geothermobarometric investigation of garnet peridotites in the Western Gneiss Region of Norway. Contrib Miner Petrol 87:72–86

    Article  Google Scholar 

  • Medaris LG, Beard BL, Johnson CM, Valley JW, Spicuzza MJ, Jelinek E, Misar Z (1995) Garnet pyroxenite and eclogite in the Bohemian Massif: Geochemical evidence for Variscan recycling of subducted lithosphere. Geol Rundsch 84:489–505

    Article  Google Scholar 

  • Medaris LG (1999) Garnet peridotites in Eurasian high-pressure and ultrahigh-pressure terranes: a diversity of origins and thermal histories. Int Geol Rev 41:799–815

    Article  Google Scholar 

  • Medaris LG, Brueckner HK (2003) Excursion to the Almklovdalen peridotite: in the Alice Wain Memorial Western Norway Eclogite Field Symposium, NGU Report 2003.055

  • Medaris LG, Fournelle JH, Lapen TJ, Johnson CM (2003) Multistage mineral assemblages and P-T evolution of the Sandvik peridotite, Gurskøy in the Alice Wain Memorial Western Norway Eclogite Field Symposium, NGU Report 2003.055

  • Mezger K, Essene EJ, Halliday AN (1992) Closure temperature of the Sm–Nd system in metamorphic garnets. Earth Planet Sci Lett 113:397–409

    Article  Google Scholar 

  • Münker C, Weyer S, Scherer EE, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICP-MS measurements. Geochem Geophys Geosys 2: Pap# 2001GC000183

  • Nelson DR, Chivas AR, Chappel BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean island sources. Geochim Cosmochim Acta 52:1–17

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL, Poudjom Djomani YH, Morgan P (2001) Are lithospheres forever? Tracking changes in subcontinental lithosphere through time. GSA Today 11:4–10

    Article  Google Scholar 

  • Ottonello G, Ernst WG, Joron JL (1984) Rare earth and 3d transition element geochemistry of peridotitic rocks: I. Peridotites from the Western Alps. J Petrol 25:343–372

    Google Scholar 

  • Oxburgh ER, Parmentier EM (1978) Thermal processes in the formation of continental lithosphere. Phil Trans R Soc Lond 288:415–429

    Article  Google Scholar 

  • Patchett PJ (1983) Importance of the Lu–Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim Cosmochim Acta 47:81–91

    Article  Google Scholar 

  • Poudjom Djomani YH, O’reilly SY, Griffin WL, Morgan P (2001) The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett 184:181–198

    Article  Google Scholar 

  • Rubenstone J, Zindler A, Brueckner HK (1986) Pb, Nd, and Sr isotope systematics in Norwegian garnet peridotites: fifth international conference of geochronology, cosmochronology, and isotope geology, Cambridge, England. Terra Cognita 6:243

    Google Scholar 

  • Russ GP (1973) Apollo 16 neutron stratigraphy. Earth Planet Sci Lett 2:275–289

    Google Scholar 

  • Salters VJM, Hart SR (1991) The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection. Earth Planet Sci Lett 104:364–380

    Article  Google Scholar 

  • Scherer EE, Cameron KL, Blichert-Toft J (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace inclusions. Geochim Cosmochim Acta 64:3413–3432

    Article  Google Scholar 

  • Scherer EE, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–686

    Article  PubMed  Google Scholar 

  • Shaw DM (2000) Continuous (dynamic) melting theory revisited. Can Mineral 38:1041–1063

    Article  Google Scholar 

  • Smith DC (1980) A tectonic mélange of foreign eclogites and ultramafics in west Norway. Nature 287:366–367

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Magmatism in the ocean basins. Saunders AJ, Norry MJ (eds) Geol Soc Am Spec Pub 42:313–345

    Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703

    Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare-earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142:416–424

    Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

  • Wain A (1997) New evidence for coesite in eclogite and gneisses: defining an ultrahigh-pressure province in the Western Gneiss Region of Norway. Geology 25:927–930

    Article  Google Scholar 

  • Wain A, Waters DJ, Ephcoat A, Olijynk H (2000) The high-pressure to ultrahigh-pressure eclogite transition in the Western Gneiss Region, Norway. Eur J Miner 12:667–687

    Google Scholar 

  • Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45:2311–2323

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rene Wiesli for maintaining the MC-ICP-MS at UW-Madison. We also thank Dr. John Fournelle who assisted us with electron microprobe analyses at UW-Madison. This research was supported by National Science Foundation grant EAR-0309853 (CMJ) and the UW-Madison Morgridge Graduate Fellowship (TJL). Reviews and criticisms by Hannes Brueckner and Aaron Cavosie and journal reviewers P. Jonathan Patchett and Peter Kelemen resulted in significant improvements to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Lapen.

Additional information

Editorial Responsibility: T. L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapen, T.J., Medaris, L.G., Johnson, C.M. et al. Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm–Nd and Lu–Hf isotope analyses of the Sandvik ultramafic body, Norway. Contrib Mineral Petrol 150, 131–145 (2005). https://doi.org/10.1007/s00410-005-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0021-z

Keywords

Navigation