Skip to main content

Advertisement

Log in

Cytokines in Lung Transplantation

  • REVIEW: CYTOKINES IN LUNG TRANSPLANTATION
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Lung transplantation has developed significantly in recent years, but post-transplant care and patients’ survival still need to be improved. Moreover, organ shortage urges novel modalities to improve the quality of unsuitable lungs. Cytokines, the chemical mediators of the immune system, might be used for diagnostic and therapeutic purposes in lung transplantation. Cytokine monitoring pre- and post-transplant could be applied to the prevention and early diagnosis of injurious inflammatory events including primary graft dysfunction, acute cellular rejection, bronchiolitis obliterans syndrome, restrictive allograft syndrome, and infections. In addition, preoperative cytokine removal, specific inhibition of proinflammatory cytokines, and enhancement of anti-inflammatory cytokines gene expression could be considered therapeutic options to improve lung allograft survival. Therefore, it is essential to describe the cytokines alteration during inflammatory events to gain a better insight into their role in developing the abovementioned complications. Herein, cytokine fluctuations in lung tissue, bronchoalveolar fluid, peripheral blood, and exhaled breath condensate in different phases of lung transplantation have been reviewed; besides, cytokine gene polymorphisms with clinical significance have been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardy JD, Webb WR, Dalton ML, Walker GR (1963) Lung homotransplantation in man: report of the initial case. JAMA 186(12):1065–1074

    Article  PubMed  CAS  Google Scholar 

  2. Bos S, Vos R, Van Raemdonck DE, Verleden GM (2020) Survival in adult lung transplantation: where are we in 2020? Curr Opin Organ Transplant 25(3):268–273

    Article  PubMed  Google Scholar 

  3. Scheffner I, Gietzelt M, Abeling T, Marschollek M, Gwinner W (2020) Patient survival after kidney transplantation: important role of graft-sustaining factors as determined by predictive modeling using random survival forest analysis. Transplantation 104(5):1095–1107. https://doi.org/10.1097/tp.0000000000002922

    Article  PubMed  Google Scholar 

  4. Kim W, Lake J, Smith J, Schladt D, Skeans M, Harper A et al (2018) OPTN/SRTR 2016 annual data report: liver. Am J Transplant 18:172–253

    Article  PubMed  Google Scholar 

  5. Wilhelm MJ (2015) Long-term outcome following heart transplantation: current perspective. J Thorac Dis 7(3):549

    PubMed  PubMed Central  Google Scholar 

  6. Hachem RR (2019) The role of the immune system in lung transplantation: towards improved long-term results. J Thorac Dis 11(Suppl 14):S1721

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oppenheim JJ (2001) Cytokines: past, present, and future. Int J Hematol 74(1):3–8. https://doi.org/10.1007/BF02982543

    Article  PubMed  CAS  Google Scholar 

  8. Corris P, Kirby J (2005) A role for cytokine measurement in therapeutic monitoring of immunosuppressive drugs following lung transplantation. Clin Exp Immunol 139(2):176–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. de Perrot M, Fischer S, Liu M, Imai Y, Martins S, Sakiyama S et al (2003) Impact of human interleukin-10 on vector-induced inflammation and early graft function in rat lung transplantation. Am J Respir Cell Mol Biol 28(5):616–625

    Article  PubMed  Google Scholar 

  10. Wollin M, Abele S, Bruns H, Weyand M, Kalden JR, Ensminger SM et al (2009) Inhibition of TNF-α reduces transplant arteriosclerosis in a murine aortic transplant model. Transpl Int 22(3):342–349. https://doi.org/10.1111/j.1432-2277.2008.00802.x

    Article  PubMed  CAS  Google Scholar 

  11. Andrade CF, Kaneda H, Der S, Tsang M, Lodyga M, Dos Santos CC et al (2006) Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation. J Heart Lung Transplant 25(11):1317–1323

    Article  PubMed  Google Scholar 

  12. De Perrot M, Sekine Y, Fischer S, Waddell TK, McRAE K, Liu M et al (2002) Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 165(2):211–215

    Article  PubMed  Google Scholar 

  13. Kaneda H, Waddell T, De Perrot M, Bai XH, Gutierrez C, Arenovich T et al (2006) Pre-implantation multiple cytokine mRNA expression analysis of donor lung grafts predicts survival after lung transplantation in humans. Am J Transplant 6(3):544–551

    Article  PubMed  CAS  Google Scholar 

  14. Varelias A, Gartlan KH, Kreijveld E, Olver SD, Lor M, Kuns RD et al (2015) Lung parenchyma-derived IL-6 promotes IL-17A-dependent acute lung injury after allogeneic stem cell transplantation. Blood 125(15):2435–2444. https://doi.org/10.1182/blood-2014-07-590232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xing Z, Jordana M, Gauldie J (1992) IL-1 beta and IL-6 gene expression in alveolar macrophages: modulation by extracellular matrices. Am J Physiol 262(5 Pt 1):L600–L605. https://doi.org/10.1152/ajplung.1992.262.5.L600

    Article  PubMed  CAS  Google Scholar 

  16. Mosharmovahed B, Fatahi Y, Mohebbi B, Ghorbanian SA, Assadiasl S (2020) Tocilizumab in transplantation. Eur J Clin Pharmacol 76(6):765–773

    Article  PubMed  CAS  Google Scholar 

  17. Cypel M, Kaneda H, Yeung JC, Anraku M, Yasufuku K, de Perrot M et al (2011) Increased levels of interleukin-1β and tumor necrosis factor-α in donor lungs rejected for transplantation. J Heart Lung Transplant 30(4):452–459

    Article  PubMed  Google Scholar 

  18. Assadiasl S, Mooney N, Nicknam MH (2021) Cytokines in liver transplantation. Cytokine 148:155705

    Article  PubMed  CAS  Google Scholar 

  19. Boehler A (2002) The role of interleukin-10 in lung transplantation. Transpl Immunol 9(2–4):121–124

    Article  PubMed  CAS  Google Scholar 

  20. Martins S, De Perrot M, Imai Y, Yamane M, Quadri S, Segall L et al (2004) Transbronchial administration of adenoviral-mediated interleukin-10 gene to the donor improves function in a pig lung transplant model. Gene Ther 11(24):1786–1796

    Article  PubMed  CAS  Google Scholar 

  21. Cypel M, Liu M, Rubacha M, Yeung JC, Hirayama S, Anraku M et al (2009) Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med 1(4):4ra9-4ra9

    Article  PubMed  Google Scholar 

  22. Yeung JC, Wagnetz D, Cypel M, Rubacha M, Koike T, Chun Y-M et al (2012) Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre-and post–lung transplantation in the pig. Mol Ther 20(6):1204–1211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yanagisawa J, Shiraishi T, Iwasaki A, Maekawa S, Higuchi T, Hiratuka M et al (2009) PPARα ligand WY14643 reduced acute rejection after rat lung transplantation with the upregulation of IL-4, IL-10 and TGFβ mRNA expression. J Heart Lung Transpl 28(11):1172–1179

    Article  Google Scholar 

  24. Lee J, Nakagiri T, Kamimura D, Harada M, Oto T, Susaki Y et al (2013) IL-6 amplifier activation in epithelial regions of bronchi after allogeneic lung transplantation. Int Immunol 25(5):319–332

    Article  PubMed  CAS  Google Scholar 

  25. Saito T, Takahashi H, Kaneda H, Binnie M, Azad S, Sato M et al (2013) Impact of cytokine expression in the pre-implanted donor lung on the development of chronic lung allograft dysfunction subtypes. Am J Transpl 13(12):3192–3201

    Article  CAS  Google Scholar 

  26. Fisher AJ, Donnelly SC, Hirani N, Haslett C, Strieter RM, Dark JH et al (2001) Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med 163(1):259–265

    Article  PubMed  CAS  Google Scholar 

  27. Moreno I, Vicente R, Ramos F, Vicente J, Barbera M (2007) Determination of interleukin-6 in lung transplantation: association with primary graft dysfunction. Transplantation proceedings. Elsevier, Amsterdam, pp 2425–2426

    Google Scholar 

  28. Verleden SE, Martens A, Ordies S, Neyrinck AP, Van Raemdonck DE, Verleden GM et al (2018) Immediate post-operative broncho-alveolar lavage IL-6 and IL-8 are associated with early outcomes after lung transplantation. Clin Transpl 32(4):e13219

    Article  Google Scholar 

  29. Moreno I, Mir A, Vicente R, Pajares A, Ramos F, Vicente J et al (2008) Analysis of interleukin-6 and interleukin-8 in lung transplantation: correlation with nitric oxide administration. Transplantation proceedings. Elsevier, Amsterdam, pp 3082–3084

    Google Scholar 

  30. Slebos D-J, Postma DS, Koëter GH, Van Der Bij W, Boezen M, Kauffman HF (2004) Bronchoalveolar lavage fluid characteristics in acute and chronic lung transplant rejection. J Heart Lung Transpl 23(5):532–540

    Article  Google Scholar 

  31. Whitehead BF, Stoehr C, Wu CJ, Patterson G, Burchard EG, Theodore J et al (1993) Cytokine gene expression in human lung transplant recipients. Transplantation 56(4):956–961

    Article  PubMed  CAS  Google Scholar 

  32. Moudgil A, Bagga A, Toyoda M, Nicolaidou E, Jordan S, Ross D (1999) Expression of Γ-IFN mRNA in bronchoalveolar lavage fluid correlates with early acute allograft rejection in lung transplant recipients. Clin Transpl 13(2):201–207

    Article  CAS  Google Scholar 

  33. Levy L, Huszti E, Ahmed M, Ghany R, Hunter S, Moshkelgosha S et al (2021) Bronchoalveolar lavage cytokine-based risk stratification of minimal acute rejection in clinically stable lung transplant recipients. J Heart Lung Transpl 40(12):1540–1549

    Article  Google Scholar 

  34. Patella M, Anile M, Del Porto P, Diso D, Pecoraro Y, Onorati I et al (2015) Role of cytokine profile in the differential diagnosis between acute lung rejection and pulmonary infections after lung transplantation. Eur J Cardiothorac Surg 47(6):1031–1036

    Article  PubMed  Google Scholar 

  35. Vanaudenaerde B, De Vleeschauwer S, Vos R, Meyts I, Bullens D, Reynders V et al (2008) The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transpl 8(9):1911–1920

    Article  CAS  Google Scholar 

  36. Verleden SE, Vos R, Mertens V, Willems-Widyastuti A, De Vleeschauwer SI, Dupont LJ et al (2011) Heterogeneity of chronic lung allograft dysfunction: insights from protein expression in broncho alveolar lavage. J Heart Lung Transpl 30(6):667–673

    Article  Google Scholar 

  37. Vos R, Vanaudenaerde BM, De Vleeschauwer SI, Willems-Widyastuti A, Scheers H, Van Raemdonck DE et al (2009) Circulating and intrapulmonary C-reactive protein: a predictor of bronchiolitis obliterans syndrome and pulmonary allograft outcome. J Heart Lung Transpl 28(8):799–807

    Article  Google Scholar 

  38. Ross DJ, Moudgil A, Bagga A, Toyoda M, Marchevsky AM, Kass RM et al (1999) Lung allograft dysfunction correlates with γ-interferon gene expression in bronchoalveolar lavage. J Heart Lung Transpl 18(7):627–636

    Article  CAS  Google Scholar 

  39. Verleden SE, Ruttens D, Vos R, Vandermeulen E, Moelants E, Mortier A et al (2015) Differential cytokine, chemokine and growth factor expression in phenotypes of chronic lung allograft dysfunction. Transplantation 99(1):86–93

    Article  PubMed  CAS  Google Scholar 

  40. Berastegui C, Gómez-Ollés S, Sánchez-Vidaurre S, Culebras M, Monforte V, López-Meseguer M et al (2017) BALF cytokines in different phenotypes of chronic lung allograft dysfunction in lung transplant patients. Clin Transpl 31(3):e12898

    Article  Google Scholar 

  41. Belperio JA, DiGiovine B, Keane MP, Burdick MD, Xue YY, Ross DJ et al (2002) Interleukin-1 receptor antagonist as a biomarker for bronchiolitis obliterans syndrome in lung transplant recipients. Transplantation 73(4):591–599

    Article  PubMed  CAS  Google Scholar 

  42. Meloni F, Vitulo P, Cascina A, Oggionni T, Bulgheroni A, Paschetto E et al (2004) Bronchoalveolar lavage cytokine profile in a cohort of lung transplant recipients: a predictive role of interleukin-12 with respect to onset of bronchiolitis obliterans syndrome. J Heart Lung Transpl 23(9):1053–1060

    Article  Google Scholar 

  43. Scholma J, Slebos D-J, Marike boezen H, van den Berg JW, van der Bij W, de Boer WJ et al (2000) Eosinophilic granulocytes and interleukin-6 level in bronchoalveolar lavage fluid are associated with the development of obliterative bronchiolitis after lung transplantation. Am J Respir Crit Care Med 162(6):2221–2225

    Article  PubMed  CAS  Google Scholar 

  44. Keane MP, Gomperts BN, Weigt S, Xue YY, Burdick MD, Nakamura H et al (2007) IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol 178(1):511–519

    Article  PubMed  CAS  Google Scholar 

  45. Neujahr D, Perez S, Mohammed A, Ulukpo O, Lawrence E, Fernandez F et al (2012) Cumulative exposure to gamma interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant. Am J Transpl 12(2):438–446

    Article  CAS  Google Scholar 

  46. Magnan A, Mege J-L, Escallier J-C, Brisse J, Capo C, Reynaud M et al (1996) Balance between alveolar macrophage IL-6 and TGF-beta in lung-transplant recipients. Marseille and Montréal Lung Transplantation Group. Am J Respir Crit Care Med 153(4):1431–1436

    Article  PubMed  CAS  Google Scholar 

  47. Rizzo M, SivaSai KS, Smith MA, Trulock EP, Lynch JP, Patterson GA et al (2000) Increased expression of inflammatory cytokines and adhesion molecules by alveolar macrophages of human lung allograft recipients with acute rejection: decline with resolution of rejection. J Heart Lung Transpl 19(9):858–865

    Article  CAS  Google Scholar 

  48. Borthwick L, Corris P, Mahida R, Walker A, Gardner A, Suwara M et al (2013) TNFα from classically activated macrophages accentuates epithelial to mesenchymal transition in obliterative bronchiolitis. Am J Transpl 13(3):621–633

    Article  CAS  Google Scholar 

  49. Fisichella PM, Davis CS, Lowery E, Ramirez L, Gamelli RL, Kovacs EJ (2013) Aspiration, localized pulmonary inflammation, and predictors of early-onset bronchiolitis obliterans syndrome after lung transplantation. J Am Coll Surg 217(1):90–100

    Article  PubMed  PubMed Central  Google Scholar 

  50. Elssner A, Jaumann F, Dobmann S, Behr J, Schwaiblmair M, Reichenspurner H et al (2000) Elevated levels of interleukin-8 and transforming growth factor-beta in bronchoalveolar lavage fluid from patients with bronchiolitis obliterans syndrome: proinflammatory role of bronchial epithelial cells. Munich lung transplant group. Transplantation 70(2):362–367. https://doi.org/10.1097/00007890-200007270-00022

    Article  PubMed  CAS  Google Scholar 

  51. Ramirez AM, Nunley DR, Rojas M, Roman J (2008) Activation of tissue remodeling precedes obliterative bronchiolitis in lung transplant recipients. Biomarker Insights 3:BMI.S686

    Article  Google Scholar 

  52. Hodge G, Hodge S, Reynolds PN, Holmes M (2005) Increased intracellular pro-and anti-inflammatory cytokines in bronchoalveolar lavage T cells of stable lung transplant patients. Transplantation 80(8):1040–1045

    Article  PubMed  CAS  Google Scholar 

  53. Hodge G, Hodge S, Chambers D, Reynolds PN, Holmes M (2007) Acute lung transplant rejection is associated with localized increase in T-cell IFNγ and TNFα proinflammatory cytokines in the airways. Transplantation 84(11):1452–1458

    Article  PubMed  CAS  Google Scholar 

  54. Iacono A, Dauber J, Keenan R, Spichty K, Cai J, Grgurich W et al (1997) Interleukin 6 and interferon-γ gene expression in lung transplant recipients with refractory acute cellular rejection: implications for monitoring and inhibition by treatment with aerosolized cyclosporine. Transplantation 64(2):263–269

    Article  PubMed  CAS  Google Scholar 

  55. Suwara MI, Vanaudenaerde BM, Verleden SE, Vos R, Green NJ, Ward C et al (2014) Mechanistic differences between phenotypes of chronic lung allograft dysfunction after lung transplantation. Transpl Int 27(8):857–867

    Article  PubMed  CAS  Google Scholar 

  56. Shankar J, Nguyen M, Crespo M, Kwak E, Lucas S, McHugh K et al (2016) Looking beyond respiratory cultures: microbiome-cytokine signatures of bacterial pneumonia and tracheobronchitis in lung transplant recipients. Am J Transpl 16(6):1766–1778

    Article  CAS  Google Scholar 

  57. Stjärne Aspelund A, Hammarström H, Inghammar M, Larsson H, Hansson L, Christensson B et al (2018) Heparin-binding protein, lysozyme, and inflammatory cytokines in bronchoalveolar lavage fluid as diagnostic tools for pulmonary infection in lung transplanted patients. Am J Transpl 18(2):444–452

    Article  Google Scholar 

  58. Hallsten J, Vigneswaran WT (2019) Cytokine biomarkers as indicators of primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction in lung transplant recipients: a review. Perioper Care Organ Transpl Recipient. https://doi.org/10.5772/intechopen.84661

    Article  Google Scholar 

  59. Mal H, Dehoux M, Sleiman C, Boczkowski J, Lesèche G, Pariente R et al (1998) Early release of proinflammatory cytokines after lung transplantation. Chest 113(3):645–651

    Article  PubMed  CAS  Google Scholar 

  60. Mathur A, Baz M, Staples ED, Bonnell M, Speckman JM, Hess PJ Jr et al (2006) Cytokine profile after lung transplantation: correlation with allograft injury. Ann Thorac Surg 81(5):1844–1850

    Article  PubMed  Google Scholar 

  61. Hoffman S, Wang L, Shah CV, Ahya V, Pochettino A, Olthoff K et al (2009) Plasma cytokines and chemokines in primary graft dysfunction post-lung transplantation. Am J Transpl 9(2):389–396

    Article  CAS  Google Scholar 

  62. Pham S, Yoshida Y, Aeba R, Hattler B, Iwaki Y, Zeevi A et al (1992) Interleukin-6, a marker of preservation injury in clinical lung transplantation. J Heart Lung Transpl 11(6):1017–1024

    CAS  Google Scholar 

  63. Hodge G, Hodge S, Li-Liew C, Chambers D, Hopkins P, Reynolds P et al (2010) Time post-lung transplant correlates with increasing peripheral blood T cell granzyme B and proinflammatory cytokines. Clin Exp Immunol 161(3):584–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hodge G, Hodge S, LI-Liew C, Reynolds PN, Holmes M (2012) Increased natural killer T-like cells are a major source of pro-inflammatory cytokines and granzymes in lung transplant recipients. Respirology 17(1):155–163

    Article  PubMed  Google Scholar 

  65. Hodge G, Hodge S, Reynolds P, Holmes M (2005) Intracellular cytokines in blood T cells in lung transplant patients–a more relevant indicator of immunosuppression than drug levels. Clin Exp Immunol 139(1):159–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hodge G, Hodge S, Reynolds PN, Holmes M (2006) Compartmentalization of intracellular proinflammatory cytokines in bronchial intraepithelial T cells of stable lung transplant patients. Clin Exp Immunol 145(3):413–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hodge G, Hodge S, Reynolds PN, Holmes M (2005) Up-regulation of interleukin-8, interleukin-10, monocyte chemotactic protein-1, and monocyte chemotactic protein-3 in peripheral blood monocytes in stable lung transplant recipients: are immunosuppression regimens working? Transplantation 79(4):387–391

    Article  PubMed  CAS  Google Scholar 

  68. Teixeira R, Antonangelo L, Vargas F, Caramori M, Afonso J Jr, Acencio M et al (2010) Cytokine profile in pleural fluid and serum after lung transplantation. Transplantation proceedings. Elsevier, Amsterdam, pp 531–534

    Google Scholar 

  69. Hall DJ, Baz M, Daniels MJ, Staples ED, Klodell CT, Moldawer LL et al (2012) Immediate postoperative inflammatory response predicts long-term outcome in lung-transplant recipients. Interact Cardiovasc Thorac Surg 15(4):603–607

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yoshida Y, Iwaki Y, Pham S, Dauber JH, Yousem SA, Zeevi A et al (1993) Benefits of posttransplantation monitoring of interleukin 6 in lung transplantation. Ann Thorac Surg 55(1):89–93

    Article  PubMed  CAS  Google Scholar 

  71. Hodge G, Hodge S, Chambers D, Reynolds PN, Holmes M (2009) Bronchiolitis obliterans syndrome is associated with absence of suppression of peripheral blood Th1 proinflammatory cytokines. Transplantation 88(2):211–218

    Article  PubMed  Google Scholar 

  72. Fan L, Benson HL, Vittal R, Mickler EA, Presson R, Fisher AJ et al (2011) Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transpl 11(5):911–922

    Article  CAS  Google Scholar 

  73. Horváth I, Hunt J, Barnes PJ (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26(3):523–548

    Article  PubMed  Google Scholar 

  74. Antus B, Barta I, Czebe K, Horvath I, Csiszer E (2010) Analysis of cytokine pattern in exhaled breath condensate of lung transplant recipients with bronchiolitis obliterans syndrome. Inflamm Res 59(1):83–86

    Article  PubMed  CAS  Google Scholar 

  75. Kastelijn EA, Rijkers GT, Van Moorsel CH, Zanen P, Kwakkel-van Erp JM, Van De Graaf EA et al (2010) Systemic and exhaled cytokine and chemokine profiles are associated with the development of bronchiolitis obliterans syndrome. J Heart Lung Transpl 29(9):997–1008

    Article  Google Scholar 

  76. Lu KC, Jaramillo A, Lecha RL, Schuessler RB, Aloush A, Trulock EP et al (2002) Interleukin-6 and interferon-gamma gene polymorphisms in the development of bronchiolitis obliterans syndrome after lung transplantation. Transplantation 74(9):1297–1302. https://doi.org/10.1097/00007890-200211150-00017

    Article  PubMed  CAS  Google Scholar 

  77. Snyder LD, Hartwig MG, Ganous T, Davis RD, Herczyk WF, Reinsmoen NL et al (2006) Cytokine gene polymorphisms are not associated with bronchiolitis obliterans syndrome or survival after lung transplant. J Heart Lung Transpl 25(11):1330–1335

    Article  Google Scholar 

  78. Awad M, Pravica V, Perrey C, El Gamel A, Yonan N, Sinnott PJ et al (1999) CA repeat allele polymorphism in the first intron of the human interferon-γ gene is associated with lung allograft fibrosis. Hum Immunol 60(4):343–346

    Article  PubMed  CAS  Google Scholar 

  79. Mu HJ, Xie P, Chen JY, Gao F, Zou J, Zhang J et al (2014) Association of TNF-α, TGF-β1, IL-10, IL-6, and IFN-γ gene polymorphism with acute rejection and infection in lung transplant recipients. Clin Transpl 28(9):1016–1024

    Article  CAS  Google Scholar 

  80. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV (1998) Genotypic variation in the transforming growth factor-β1 gene: association with transforming growth factor-β1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66(8):1014–1020

    Article  PubMed  CAS  Google Scholar 

  81. Zheng HX, Burckart GJ, McCurry K, Webber S, Ristich J, Iacono A et al (2004) Interleukin-10 production genotype protects against acute persistent rejection after lung transplantation. J Heart Lung Transpl 23(5):541–546

    Article  Google Scholar 

  82. Assadiasl S, Fatahi Y, Mosharmovahed B, Mohebbi B, Nicknam MH (2021) Baricitinib: from rheumatoid arthritis to COVID-19. J Clin Pharmacol 61(10):1274–1285. https://doi.org/10.1002/jcph.1874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Assadiasl S, Ahmadpoor P, Nafar M, Lessan Pezeshki M, Pourrezagholi F, Parvin M et al (2014) Regulatory T cell subtypes and TGF-β1 gene expression in chronic allograft dysfunction. Iran J Immunol 11(3):139–152

    PubMed  Google Scholar 

  84. Zhao SQ, Xue ZZ, Wang LZ (2017) HMGB1, TGF-β and NF-κB are associated with chronic allograft nephropathy. Exp Ther Med 14(6):6138–6146. https://doi.org/10.3892/etm.2017.5319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Watanabe T, Cypel M, Keshavjee S (2021) Ex vivo lung perfusion. J Thorac Dis 13(11):6602–6617. https://doi.org/10.21037/jtd-2021-23

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sage AT, Richard-Greenblatt M, Zhong K, Bai XH, Snow MB, Babits M et al (2021) Prediction of donor related lung injury in clinical lung transplantation using a validated ex vivo lung perfusion inflammation score. J Heart Lung Transpl 40(7):687–695

    Article  Google Scholar 

  87. Iskender I, Cosgun T, Arni S, Trinkwitz M, Fehlings S, Yamada Y et al (2018) Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. J Heart Lung Transpl 37(2):283–291

    Article  Google Scholar 

Download references

Funding

No sources of funding to report.

Author information

Authors and Affiliations

Authors

Contributions

S.A. wrote the main manuscript, and M.H.N. reviewed the manuscript.

Corresponding author

Correspondence to Sara Assadiasl.

Ethics declarations

Conflict of interest

No conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadiasl, S., Nicknam, M.H. Cytokines in Lung Transplantation. Lung 200, 793–806 (2022). https://doi.org/10.1007/s00408-022-00588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-022-00588-1

Keywords

Navigation