Skip to main content
Log in

Fluoxetine reverses behavior changes in socially isolated rats: role of the hippocampal GSH-dependent defense system and proinflammatory cytokines

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Exposure of an organism to chronic social isolation (CSIS) has been shown to have an important role in depression. Fluoxetine (Flx) is a first-line treatment for depression; however, its downstream mechanisms of action beyond serotonergic signaling remain ill-defined. We investigated the effect of 3 weeks of Flx (15 mg/kg/day) treatment on behavioral changes and protein expression/activity of the GSH-dependent defense system, including reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GLR), and glutathione S-transferase (GST), as well as catalase (CAT), in the hippocampus of rats exposed to 6 weeks of CSIS. The subcellular distributions of nuclear factor-κB (NF-κB), as well as, cytosolic IL-1β and IL-6 protein expression, were also determined. CSIS induced depressive- and anxiety-like behaviors, evidenced by a decrease in sucrose preference and an increase in the number of buried marbles. Moreover, CSIS compromised redox homeostasis, targeting enzymes such as GPx, CAT, GST, and caused NF-κB nuclear translocation with a concomitant increase in IL-6 protein expression, without an effect on IL-1β. Flx treatment reversed CSIS-induced depressive- and anxiety-like behaviors, modulated GSH-dependent defense by increasing GLR and GST activity, and suppressed NF-κB activation and cytosolic IL-6 protein expression in socially isolated rats. The present study suggests that changes in the GSH-dependent defense system, NF-κB activation and increased IL-6 protein expression may have a role in social isolation-induced changes in a rat model of depression and anxiety, and contributes to our understanding of the mechanisms that underlie the antidepressant and anti-inflammatory activity of Flx in socially isolated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692. doi:10.1016/j.pnpbp.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  2. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. doi:10.1038/nrn1683

    Article  PubMed  Google Scholar 

  3. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445. doi:10.1038/nrn2639

    Article  CAS  PubMed  Google Scholar 

  4. Filipović D, Todorović N, Bernardi RE, Gass P (2017) Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms. Brain Struct Funct 222:1–20. doi:10.1007/s00429-016-1218-9

    Article  PubMed  Google Scholar 

  5. Chen H-JC, Spiers JG, Sernia C, Lavidis NA (2015) Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 9:3. doi:10.3389/fnins.2015.00003

    PubMed  PubMed Central  Google Scholar 

  6. Gawryluk JW, Wang J-F, Andreazza AC et al (2011) Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 14:1069–1074. doi:10.1017/S1461145711000617

    Article  CAS  PubMed  Google Scholar 

  7. Halliwell B (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol Sci 32:125–130. doi:10.1016/j.tips.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  8. Hovatta I, Juhila J, Donner J (2010) Oxidative stress in anxiety and comorbid disorders. Neurosci Res 68:261–275. doi:10.1016/j.neures.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  9. Anderson G, Maes M (2013) Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry 42:5–19. doi:10.1016/j.pnpbp.2012.06.014

    Article  CAS  Google Scholar 

  10. Maes M, Bosmans E, De Jongh R et al (1997) Increased serum Il-6 and Il-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9:853–858. doi:10.1006/cyto.1997.0238

    Article  CAS  PubMed  Google Scholar 

  11. Loftis JM, Huckans M, Morasco BJ (2010) Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 37:519–533. doi:10.1016/j.nbd.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  12. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. doi:10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Salim S, Asghar M, Taneja M et al (2011) Potential contribution of oxidative stress and inflammation to anxiety and hypertension. Brain Res 1404:63–71. doi:10.1016/j.brainres.2011.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilde MI, Benfield P (1998) Fluoxetine. A pharmacoeconomic review of its use in depression. Pharmacoeconomics 13:543–561. doi:10.2165/00019053-199813050-00007

    Article  CAS  PubMed  Google Scholar 

  15. Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809. doi:10.1126/science.1083328

    Article  CAS  PubMed  Google Scholar 

  16. Vaidya VA, Duman RS (2001) Depresssion–emerging insights from neurobiology. Br Med Bull 57:61–79

    Article  CAS  PubMed  Google Scholar 

  17. Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62:77–91. doi:10.1016/S0165-0327(00)00352-9

    Article  CAS  PubMed  Google Scholar 

  18. Zafir A, Banu N (2007) Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 572:23–31. doi:10.1016/j.ejphar.2007.05.062

    Article  CAS  PubMed  Google Scholar 

  19. Liu D, Wang Z, Liu S et al (2011) Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology 61:592–599. doi:10.1016/j.neuropharm.2011.04.033

    Article  CAS  PubMed  Google Scholar 

  20. Heinrich LM, Gullone E (2006) The clinical significance of loneliness: a literature review. Clin Psychol Rev 26:695–718. doi:10.1016/j.cpr.2006.04.002

    Article  PubMed  Google Scholar 

  21. Möller M, Du Preez JL, Viljoen FP et al (2013) Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 30:156–167. doi:10.1016/j.bbi.2012.12.011

    Article  PubMed  Google Scholar 

  22. Filipović D, Zlatković J, Inta D et al (2011) Chronic isolation stress predisposes the frontal cortex but not the hippocampus to the potentially detrimental release of cytochrome c from mitochondria and the activation of caspase-3. J Neurosci Res 89:1461–1470. doi:10.1002/jnr.22687

    Article  PubMed  Google Scholar 

  23. Zlatković J, Todorović N, Bošković M et al (2014) Different susceptibility of prefrontal cortex and hippocampus to oxidative stress following chronic social isolation stress. Mol Cell Biochem 393:43–57. doi:10.1007/s11010-014-2045-z

    Article  PubMed  Google Scholar 

  24. Zurita A, Murúa S, Molina V (1996) An endogenous opiate mechanism seems to be involved in stress-induced anhedonia. Eur J Pharmacol 299:1–7. doi:10.1016/0014-2999(95)00754-7

    Article  CAS  PubMed  Google Scholar 

  25. Djordjevic J, Djordjevic A, Adzic M et al (2015) Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress. Brain Res 1602:20–31. doi:10.1016/j.brainres.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  26. Kovacevic I, Pokrajac M, Miljkovic B et al (2006) Comparison of liquid chromatography with fluorescence detection to liquid chromatography-mass spectrometry for the determination of fluoxetine and norfluoxetine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 830:372–376. doi:10.1016/j.jchromb.2005.11.034

    Article  CAS  PubMed  Google Scholar 

  27. Zlatković J, Todorović N, Tomanović N et al (2014) Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study. Eur J Pharm Sci 59:20–30. doi:10.1016/j.ejps.2014.04.010

    Article  PubMed  Google Scholar 

  28. Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330. doi:10.1038/sj.npp.1300433

    Article  CAS  PubMed  Google Scholar 

  29. Czéh B, Müller-Keuker JIH, Rygula R et al (2007) Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 32:1490–1503. doi:10.1038/sj.npp.1301275

    Article  PubMed  Google Scholar 

  30. Garzón J, Del Río J (1981) Hyperactivity induced in rats by long-term isolation: further studies on a new animal model for the detection of antidepressants. Eur J Pharmacol 74:287–294

    Article  PubMed  Google Scholar 

  31. Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534. doi:10.1016/S0149-7634(05)80194-0

    Article  CAS  PubMed  Google Scholar 

  32. Ho Y-J, Eichendorff J, Schwarting RKW (2002) Individual response profiles of male Wistar rats in animal models for anxiety and depression. Behav Brain Res 136:1–12

    Article  PubMed  Google Scholar 

  33. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  34. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  35. Carlberg I, Mannervik B (1985) [59] Glutathione reductase. Methods Enzymol 113:484–490. doi:10.1016/S0076-6879(85)13062-4

    Article  CAS  PubMed  Google Scholar 

  36. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  37. Greenwald RA (1985) CRC handbook of methods for oxygen radical research. CRC Press, New York

    Google Scholar 

  38. House JS (2001) Social isolation kills, but how and why? Psychosom Med 63:273–274. doi:10.1097/00006842-200103000-00011

    Article  CAS  PubMed  Google Scholar 

  39. Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10:182–190

    Article  PubMed  Google Scholar 

  40. Vollmayr B, Bachteler D, Vengeliene V et al (2004) Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 150:217–221. doi:10.1016/S0166-4328(03)00259-6

    Article  CAS  PubMed  Google Scholar 

  41. Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–569. doi:10.1016/j.neubiorev.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  42. Djordjevic J, Djordjevic A, Adzic M, Radojcic MB (2012) Effects of chronic social isolation on wistar rat behavior and brain plasticity markers. Neuropsychobiology 66:112–119. doi:10.1159/000338605

    Article  PubMed  Google Scholar 

  43. Carrier N, Kabbaj M (2012) Testosterone and imipramine have antidepressant effects in socially isolated male but not female rats. Horm Behav 61:678–685. doi:10.1016/j.yhbeh.2012.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandi C, Richter-Levin G (2009) From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci 32:312–320. doi:10.1016/j.tins.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  45. Dean O, Bush AI, Berk M et al (2009) Glutathione depletion in the brain disrupts short-term spatial memory in the Y-maze in rats and mice. Behav Brain Res 198:258–262. doi:10.1016/j.bbr.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  46. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671. doi:10.1016/S0301-0082(99)00060-X

    Article  CAS  PubMed  Google Scholar 

  47. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214. doi:10.1016/j.mito.2013.01.008

    CAS  PubMed  Google Scholar 

  48. Singh R, Lemire J, Mailloux RJ, Appanna VD (2008) A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS One 3:e2682. doi:10.1371/journal.pone.0002682

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gutierrez-Correa J, Stoppani AO (1997) Inactivation of yeast glutathione reductase by Fenton systems: effect of metal chelators, catecholamines and thiol compounds. Free Radic Res 27:543–555

    Article  CAS  PubMed  Google Scholar 

  50. Ejchel-Cohen TF, Wood GE, Wang J-F et al (2006) Chronic restraint stress decreases the expression of glutathione S-transferase pi2 in the mouse hippocampus. Brain Res 1090:156–162. doi:10.1016/j.brainres.2006.03.062

    Article  CAS  PubMed  Google Scholar 

  51. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM (1998) Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 172:527–532. doi:10.1192/bjp.172.6.527

    Article  CAS  PubMed  Google Scholar 

  52. Heckers S, Heinsen H, Geiger B, Beckmann H (1991) Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 48:1002–1008. doi:10.1001/archpsyc.1991.01810350042006

    Article  CAS  PubMed  Google Scholar 

  53. Wright IC, Rabe-Hesketh S, Woodruff PWR et al (2000) Meta-analysis of regional brain volumes in Schizophrenia. Am J Psychiatry 157:16–25. doi:10.1176/ajp.157.1.16

    Article  CAS  PubMed  Google Scholar 

  54. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760. doi:10.1146/annurev.bi.52.070183.003431

    Article  CAS  PubMed  Google Scholar 

  55. Galecki P, Szemraj J, Zboralski K et al (2009) Relation between functional polymorphism of catalase gene (−262C > T) and recurrent depressive disorder. Neuro Endocrinol Lett 30:357–362

    CAS  PubMed  Google Scholar 

  56. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138

    Article  CAS  PubMed  Google Scholar 

  57. Schiavone S, Sorce S, Dubois-Dauphin M et al (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66:384–392. doi:10.1016/j.biopsych.2009.04.033

    Article  CAS  PubMed  Google Scholar 

  58. Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128. doi:10.1034/j.1399-5618.2002.01144.x

    Article  CAS  PubMed  Google Scholar 

  59. Moretti M, Colla A, de Oliveira Balen G et al (2012) Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res 46:331–340. doi:10.1016/j.jpsychires.2011.11.009

    Article  PubMed  Google Scholar 

  60. Chung ES, Chung YC, Bok E et al (2010) Fluoxetine prevents LPS-induced degeneration of nigral dopaminergic neurons by inhibiting microglia-mediated oxidative stress. Brain Res 1363:143–150. doi:10.1016/j.brainres.2010.09.049

    Article  CAS  PubMed  Google Scholar 

  61. Mendez-David I, Tritschler L, El Ali Z et al (2015) Nrf2-signaling and BDNF: a new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett 597:121–126. doi:10.1016/j.neulet.2015.04.036

    Article  CAS  PubMed  Google Scholar 

  62. Curti C, Mingatto FE, Polizello AC et al (1999) Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 199:103–109. doi:10.1023/A:1006912010550

    Article  CAS  PubMed  Google Scholar 

  63. Seeman P (1977) Anti-schizophrenic drugs–membrane receptor sites of action. Biochem Pharmacol 26:1741–1748. doi:10.1016/0006-2952(77)90340-9

    Article  CAS  PubMed  Google Scholar 

  64. Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 33:220–228. doi:10.1016/j.pnpbp.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  65. Huether G, Schuff-Werner P (1996) Platelet serotonin acts as a locally releasable antioxidant. Adv Exp Med Biol 398:299–306

    Article  CAS  PubMed  Google Scholar 

  66. Bob P, Raboch J, Maes M et al (2010) Depression, traumatic stress and interleukin-6. J Affect Disord 120:231–234. doi:10.1016/j.jad.2009.03.017

    Article  CAS  PubMed  Google Scholar 

  67. Diniz BS, Teixeira AL, Talib L et al (2010) Interleukin-1beta serum levels is increased in antidepressant-free elderly depressed patients. Am J Geriatr Psychiatry 18:172–176. doi:10.1097/JGP.0b013e3181c2947f

    Article  PubMed  Google Scholar 

  68. O’Donovan A, Hughes BM, Slavich GM et al (2010) Clinical anxiety, cortisol and interleukin-6: evidence for specificity in emotion-biology relationships. Brain Behav Immun 24:1074–1077. doi:10.1016/j.bbi.2010.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  69. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785. doi:10.1016/j.neubiorev.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  70. Engler H, Brendt P, Wischermann J et al (2017) Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: association with depressive symptoms. Mol Psychiatry. doi:10.1038/mp.2016.264

    PubMed  Google Scholar 

  71. Kubera M, Obuchowicz E, Goehler L et al (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuro-Psychopharmacology Biol Psychiatry 35:744–759. doi:10.1016/j.pnpbp.2010.08.026

    Article  CAS  Google Scholar 

  72. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765. doi:10.1126/science.1088417

    Article  CAS  PubMed  Google Scholar 

  73. Munhoz CD, García-Bueno B, Madrigal JLM et al (2008) Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Brazilian J Med Biol Res 41:1037–1046. doi:10.1590/S0100-879X2008001200001

    Article  CAS  Google Scholar 

  74. McCusker RH, Kelley KW (2013) Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol 216:84–98. doi:10.1242/jeb.073411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tagliari B, Tagliari AP, Schmitz F et al (2011) Chronic variable stress alters inflammatory and cholinergic parameters in hippocampus of rats. Neurochem Res 36:487–493. doi:10.1007/s11064-010-0367-0

    Article  CAS  PubMed  Google Scholar 

  76. You Z, Luo C, Zhang W et al (2011) Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 225:135–141. doi:10.1016/j.bbr.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  77. Fonseka TM, McIntyre RS, Soczynska JK, Kennedy SH (2015) Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin Investig Drugs 24:459–475. doi:10.1517/13543784.2014.998334

    Article  CAS  PubMed  Google Scholar 

  78. Chourbaji S, Urani A, Inta I et al (2006) IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 23:587–594. doi:10.1016/j.nbd.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  79. Lipsky RH, Xu K, Zhu D et al (2001) Nuclear factor kappaB is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection. J Neurochem 78:254–264. doi:10.1046/j.1471-4159.2001.00386.x

    Article  CAS  PubMed  Google Scholar 

  80. Szasz BK, Mike A, Karoly R et al (2007) Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system. Biol Psychiatry 62:1303–1309. doi:10.1016/j.biopsych.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  81. Hashioka S, Klegeris A, Monji A et al (2007) Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol 206:33–42. doi:10.1016/j.expneurol.2007.03.022

    Article  CAS  PubMed  Google Scholar 

  82. Wu T-H, Lin C-H (2008) IL-6 mediated alterations on immobile behavior of rats in the forced swim test via ERK1/2 activation in specific brain regions. Behav Brain Res 193:183–191. doi:10.1016/j.bbr.2008.05.009

    Article  CAS  PubMed  Google Scholar 

  83. Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452–2459. doi:10.1038/npp.2011.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lim C-M, Kim S-W, Park J-Y et al (2009) Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res 87:1037–1045. doi:10.1002/jnr.21899

    Article  CAS  PubMed  Google Scholar 

  85. Englisch S, Inta D, Esser A, Zink M (2010) Bupropion for depression in Schizophrenia. Clin Neuropharmacol 33:257–259. doi:10.1097/WNF.0b013e3181f5a5f9

    Article  CAS  PubMed  Google Scholar 

  86. Brustolim D, Ribeiro-dos-Santos R, Kast RE et al (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6:903–907. doi:10.1016/j.intimp.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  87. Maes M, Kenis G, Kubera M et al (2005) The negative immunoregulatory effects of fluoxetine in relation to the cAMP-dependent PKA pathway. Int Immunopharmacol 5:609–618. doi:10.1016/j.intimp.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  88. Riordan KJO, Huang I, Pizzi M et al (2006) Regulation of nuclear factor B in the hippocampus by group I metabotropic glutamate receptors. New York 26:4870–4879. doi:10.1523/JNEUROSCI.4527-05.2006

    Google Scholar 

  89. Inta D, Vogt MA, Pfeiffer N et al (2013) Dichotomy in the anxiolytic versus antidepressant effect of C-terminal truncation of the GluN2A subunit of NMDA receptors. Behav Brain Res 247:227–231. doi:10.1016/j.bbr.2013.03.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant of Ministry of Education, Science and Technological Development of the Republic of Serbia (173044) to I.P., A.S. and D.F, and Grant from the Deutsche Forschungsgemeinschaft (SFB636-TP3) to P.G. We gratefully thank the staff from Faculty of Medicine, University of Belgrade, for using Chemidoc-MP System (Bio-Rad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Filipović.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perić, I., Stanisavljević, A., Gass, P. et al. Fluoxetine reverses behavior changes in socially isolated rats: role of the hippocampal GSH-dependent defense system and proinflammatory cytokines. Eur Arch Psychiatry Clin Neurosci 267, 737–749 (2017). https://doi.org/10.1007/s00406-017-0807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-017-0807-9

Keywords

Navigation