Skip to main content
Log in

Chronic Variable Stress Alters Inflammatory and Cholinergic Parameters in Hippocampus of Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study we investigated the effect of chronic variable stress (CVS) on some parameters of the immune system, including levels of cytokines [interleukin 1β (IL-1 β), interleukin 6 (IL-6), tumor necrosis factor α (TNF- α)] and chemokine CCL2 (MCP-1) in the hippocampus of rats. Acetylcholinesterase activity was also evaluated. Sixty-day old Wistar rats were submitted to different mild stressors for 40 days. After the last stress section, the cytokines and MCP-1 were determined by immunoassay and acetylcholinesterase activity by colorimetric method. Results showed that chronic stress significantly increased the levels of IL-1β, IL-6 and TNF-α, but did not alter the levels of MCP-1. In addition, acetylcholinesterase activity was increased in the hippocampus of rats subjected to CVS. These findings suggest that inflammation and cholinergic dysfunction may be, at least in part, important contributors to the neurological dysfunction observed in some depressed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Skilbeck KJ, Johnston GA, Hinton T (2010) Stress and GABA receptors. J Neurochem 112(5):1115–1130

    Article  CAS  PubMed  Google Scholar 

  2. Licinio J, Wong M (2005) Biology of depression, 1st edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  3. Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362

    Article  CAS  PubMed  Google Scholar 

  4. Munhoz CD, García-Bueno B, Madrigal JLM et al (2008) Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 41:1037–1046

    Article  CAS  PubMed  Google Scholar 

  5. Sorrels SF, Sapolski RM (2008) An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun 21(3):259–272

    Article  Google Scholar 

  6. Alesci S, Martinez PE, Kelkar S et al (2005) Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 90:2522–2530

    Article  CAS  PubMed  Google Scholar 

  7. Schlatter J, Ortuño F, Cervera-Enguix S (2004) Monocytic parameters in patients with dysthymia versus major depression. J Affect Disord 78:243–247

    Article  PubMed  Google Scholar 

  8. Tiemeier H, Hofman A, van Tuijl HR et al (2003) Inflammatory proteins and depression in the elderly. Epidemiology 14:103–107

    Article  PubMed  Google Scholar 

  9. Danner M, Kasl SV, Abramson JL et al (2003) Association between depression and elevated C-reactive protein. Psychosom Med 65:347–356

    Article  CAS  PubMed  Google Scholar 

  10. Steptoe A, Kunz-Ebrecht SR, Owen N (2003) Lack of association between depressive symptoms and markers of immune and vascular inflammation in middle-aged men and women. Psychol Med 33:667–674

    Article  CAS  PubMed  Google Scholar 

  11. Haack M, Hinze-Selch D, Fenzel T et al (1999) Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 33:407–418

    Article  CAS  PubMed  Google Scholar 

  12. Owen BM, Eccleston D, Ferrier IN et al (2001) Raised levels of plasma interleukin-1beta in major and postviral depression. Acta Psychiatr Scand 103:226–228

    Article  CAS  PubMed  Google Scholar 

  13. Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 17:131–138

    Article  Google Scholar 

  14. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) (1992) Enzyme nomenclature. Academic Press, San Diego

    Google Scholar 

  15. Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  16. Srikumar BN, Raju TR, Shankaranarayana Rao BS (2006) The involvement of cholinergic and noradrenergic systems in behavioral recovery following oxotremorine treatment to chronically stressed rats. Neuroscience 143:679–688

    Article  CAS  PubMed  Google Scholar 

  17. Mizoguchi K, Yuzurihara M, Ishige A et al (2001) Effect of chronic stress on cholinergic transmission in rat hippocampus. Brain Res 915:108–111

    Article  CAS  PubMed  Google Scholar 

  18. Sunanda GV, Shankaranarayana Rao BS, Raju TR (2000) Restraint stress-induced alterations in the levels of biogenic amines, amino acids, and AChE activity in the hippocampus. Neurochem Res 25:1547–1552

    Article  CAS  PubMed  Google Scholar 

  19. Lorenzetti V, Allen NB, Fornito A et al (2009) Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 117(1–2):1–17

    Article  PubMed  Google Scholar 

  20. Wayne C, Drevets JL, Price M (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    Article  Google Scholar 

  21. Gamaro GD, Manoli LP, Torres ILS et al (2003) Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int 42:107–114

    Article  CAS  PubMed  Google Scholar 

  22. Marin MT, Cruz FC, Planeta CS (2007) Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol Behav 90(1):29–35

    Article  CAS  PubMed  Google Scholar 

  23. Porsolt RD, Bertin A, Jalfre M (1997) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    Google Scholar 

  24. Harro J, Tõnissaar M, Eller M et al (2001) Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res 899(1–2):227–239

    Article  CAS  PubMed  Google Scholar 

  25. Konarska M, Stewart RE, McCarty R (1990) Predictability of chronic intermittent stress: effects on sympathetic-adrenal medullary responses of laboratory rats. Behav Neural Biol 53:231–243

    Article  CAS  PubMed  Google Scholar 

  26. Froger N, Palazzo E, Boni C (2004) Neurochemical and behavioral alterations in glucocorticoid receptor-impaired transgenic mice after chronic mild stress. J Neurosci 24(11):2787–2796

    Article  CAS  PubMed  Google Scholar 

  27. Ellman GL, Courtney KD, Andres V Jr (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-diebinding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    CAS  PubMed  Google Scholar 

  30. Kessler RC, McGonagle KA, Zhao S et al (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 51:8–19

    CAS  PubMed  Google Scholar 

  31. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  CAS  PubMed  Google Scholar 

  32. Elizalde N, Pastor PM, Garcia-García AL et al (2010) Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem 114(5):1302–1314

    CAS  PubMed  Google Scholar 

  33. Mao QQ, Xian YF, Xian YF, Ip SP et al (2010) Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain. Behav Brain Res 210(2):171–177

    Article  CAS  PubMed  Google Scholar 

  34. Rezin GT, Gonçalves C, Daufenbach JF et al (2009) Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res Bull 79:418–421

    Article  CAS  PubMed  Google Scholar 

  35. Willner P (1997) The chronic mild stress model of depression: valid, reasonably reliable, and useful. Psychopharmacology 134:371–377

    Article  CAS  Google Scholar 

  36. Grippo AJ, Sullivan NR, Damjanoska KJ et al (2005) Chronic mild stress induces behavioural and physiological changes, and may alter serotonin 1A receptor function in male and cycling female rats. Psychopharmacology 179:769–780

    Article  CAS  PubMed  Google Scholar 

  37. Benelli A, Filaferro M, Bertonili A et al (1999) Influence of S-adenosyl- L -carnitine on chronic mild stress-induced anhedonia in castrated rats. Braz J Pharmacol 127:645–654

    Article  CAS  Google Scholar 

  38. Nielsen CK, Arnt J, Sanchez C (2000) Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and inter-individual differences. Behav Brain Res 107:21–33

    Article  CAS  PubMed  Google Scholar 

  39. Moreau JL, Scherschlict R, Jenck F et al (1995) Chronic mild stress-induced anhedonia model of depression: sleep abnormalities and curative effects of electroshock treatment. Behav Pharmacol 6:682–687

    Article  PubMed  Google Scholar 

  40. Gronli J, Murison R, Fiske E et al (2003) Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiol Behav 84:571–577

    Article  Google Scholar 

  41. Brotto LA, Gorzalka BB, LaMarre AK (2001) Melatonin protects against the effects of chronic stress on sexual behaviour in male rats. Neuroreport 12:3465–3469

    Article  CAS  PubMed  Google Scholar 

  42. Tagliari B, dos Santos TM, Cunha AA et al (2010) Chronic variable stress induces oxidative stress and decrease butyrylcholineterase activity in blood of rats. Neural Transm 117(9):1067–1076

    Article  CAS  Google Scholar 

  43. Bielajew C, Konkle AT, Mentne AC et al (2003) Strain and gender specific effects in the forced swim tests: effects of previous stress exposure. Stress 6:269–280

    Article  CAS  PubMed  Google Scholar 

  44. Fujisaki C, Utsuyama M, Kuroda Y (2002) An immunosuppressive drug, cyclosporine-A acts like anti-depressant for rats under unpredictable chronic stress. J Med Dent Sci 50:93–100

    Google Scholar 

  45. Cheeta S, Ruigt G, van Proosdij J et al (1997) Changes in sleep architecture following chronic mild stress. Biol Psychiatry 41:419–427

    Article  CAS  PubMed  Google Scholar 

  46. O’Connor KA, Johnson JD, Hansen MK et al (2003) Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res 991(1–2):123–132

    Article  PubMed  Google Scholar 

  47. Mormède C, Castanon N, Médina C et al (2003) Chronic mild stress in mice decreases peripheral cytokine and increases central cytokine expression independently of IL-10 regulation of the cytokine network. Neuroimmunomodulation 10(6):359–366

    Google Scholar 

  48. Nguyen KT, Deak T, Owens SM et al (1998) Exposure to acute stress induces brain interleukin-1β protein in the rat. J Neurosci 19:2799–2805

    Google Scholar 

  49. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  50. Breder CA, Tsujimoto M, Terano Y et al (1993) Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine and central nervous system. J Comp Neurol 337:543–567

    Article  CAS  PubMed  Google Scholar 

  51. Miyahara S, Komori T, Fujiwara R et al (2000) Effects of repeated stress on expression of interleukin-6 (IL-6) and IL-6 receptor mRNAs in rat hypothalamus and midbrain. Life Sci 66:PL93–PL98

    Article  CAS  PubMed  Google Scholar 

  52. Lee M, Cho T, Jantaratnotai N, Wang YT et al (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533–2545

    Article  CAS  PubMed  Google Scholar 

  53. Innamorato NG, Lastres-Becker I, Cuadrado A (2009) Role of microglial redox balance in modulation of neuroinflammation. Curr Opin Neurol 22(3):308–314

    Article  CAS  PubMed  Google Scholar 

  54. Hensley K, Mhatre M, Mou S et al (2006) On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal 8(11–12):2075–2087

    CAS  PubMed  Google Scholar 

  55. De A, Krueger JM, Simasko SM (2005) Glutamate induces the expression and release of tumor necrosis factor-alpha in cultured hypothalamic cells. Brain Res 1053(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  56. Rogove AD, Tsirka SE (1998) Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol 8(1):19–25

    Article  CAS  PubMed  Google Scholar 

  57. Nair A, Bonneau RH (2006) Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol 171:72–85

    Article  CAS  PubMed  Google Scholar 

  58. Frank MG, Baratta MV, Sprunger DB et al (2006) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21:47–59

    Article  PubMed  Google Scholar 

  59. Lucca G, Comim CM, Valvassori SS et al (2009) Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 54:358–362

    Article  CAS  PubMed  Google Scholar 

  60. Vasconcellos APS, Nieto FB, Crema LM et al (2006) Chronic lithium treatment has antioxidant properties but does not prevent oxidative damage induced by chronic variate stress. Neurochem Res 31:1141–1151

    Article  CAS  PubMed  Google Scholar 

  61. Madrigal JL, Garcia-Bueno B, Hinojosa AE et al (2010) Regulation of MCP-1 production in brain by stress and noradrenaline-modulating drugs. J Neurochem 113:543–551

    Article  CAS  PubMed  Google Scholar 

  62. McEwen BS (2001) Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann N Y Acad Sci 933:265–277

    Article  CAS  PubMed  Google Scholar 

  63. Sapolsky RM (2000) The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 48:755–765

    Article  CAS  PubMed  Google Scholar 

  64. Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657

    Article  CAS  PubMed  Google Scholar 

  65. Luo L, Tan RX (2001) Fluoxetine inhibits dendrite atrophy of hippocampal neurons by decreasing nitric oxide synthase expression in rat depression model. Acta Pharmacol Sin 22:865–870

    CAS  PubMed  Google Scholar 

  66. Madrigal JLM, Olivenza R, Moro MA et al (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24(4):420–429

    Article  CAS  PubMed  Google Scholar 

  67. Little AR, Sriram K, O’Callaghan JP (2006) Corticosterone regulates expression of CCL2 in the intact and chemically injured hippocampus. Neurosci Lett 399:162–166

    Article  CAS  PubMed  Google Scholar 

  68. Rada P, Colasante C, Skirzewski M et al (2006) Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience 141:67–76

    Article  CAS  PubMed  Google Scholar 

  69. Müller TC, Rocha JBC, Morsch VM et al (2002) Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochim Biophys Acta 1587:92–98

    PubMed  Google Scholar 

  70. Barcellos CK, Schetinger MRC, Dias RD et al (1998) In vitro effect of central nervous system active drugs on the ATPase-ADPase activity and acetylcholinesterase activity from cerebral cortex of adult rats. Gen Pharmacol 31:563–567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagliari, B., Tagliari, A.P., Schmitz, F. et al. Chronic Variable Stress Alters Inflammatory and Cholinergic Parameters in Hippocampus of Rats. Neurochem Res 36, 487–493 (2011). https://doi.org/10.1007/s11064-010-0367-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0367-0

Keywords

Navigation