Skip to main content
Log in

Visual sensory processing deficits in Schizophrenia and their relationship to disease state

  • ORIGINAL PAPER
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Context

Visual Evoked Potential (VEP) abnormalities have been a fairly consistent finding in patients with schizophrenia, and it has been suggested that electrophysiological markers of early sensory processing may be useful as trait markers for the illness, and for development as potential diagnostic measures.

Objective

Clear amplitude reductions in the occipital P1 component of the VEP (~100 ms), have been repeatedly demonstrated in patients with schizophrenia. Here, we investigated whether the extent of this deficit was related to age, clinical symptoms, medication status and length of illness, in a large cohort of ethnically homogenous patients.

Design, setting and participants

VEP responses to simple isolated-check stimuli were examined in 52 DSM-IV diagnosed patients with schizophrenia, and compared with responses from 26 healthy age-matched control subjects. Using high-density electrical scalp recordings, we assessed the integrity of the visual P1 component across the two groups. This study was conducted at St.Vincent’s Psychiatric Hospital in Fairview, Dublin, Ireland.

Results

Substantially reduced P1 amplitude was demonstrated in the patient group compared to controls. The deficit was not linked to age, length of illness or medication status. A small positive correlation, accounting for about 11% of the variance, was found between P1 amplitude and clinical symptoms scales (BPRS and SANS). In addition, we found that a slightly later (~110 ms) fronto-central component was relatively increased in the patient group, and was inversely correlated with the occipital P1 amplitude in the patients, but not in the healthy control subjects.

Conclusions

Our findings clearly demonstrate a deficit in early visual processing in patients with schizophrenia (with a large effect size; Cohen’s d = 0.7) that is unrelated to chronicity. The results are consistent with recent findings showing that the P1 deficit is endophenotypic of the disorder and related to genetic risk factors rather than the disease process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The reader may note that an earlier difference at ~50 ms over fronto-central sites also reaches significance in the statistical cluster plot. As this effect was unpredicted and not observed in any previous studies, we are inclined not to conjecture on its significance until such time as it is replicated

References

  1. Alain C, Hargrave R, Woods DL (1998) Processing of auditory stimuli during visual attention in patients with schizophrenia. Biol Psychiatry 44(11):1151–1159

    Article  PubMed  CAS  Google Scholar 

  2. Andreasen NC (1983) The scale for the assessment of negative symptoms (SANS). Department of Psychiatry, University of Iowa, Iowa City

  3. Basinska A (1998) Altered electrophysiological pattern of target detection in schizophrenia in the continuous attention test. Acta Neurobiol Exp (Wars) 58(3):207–220

    CAS  Google Scholar 

  4. Birkett P, Brindley A, Norman P, Harrison G, Baddeley A (2006) Control of attention in schizophrenia. J Psychiatr Res 40(7):579–588

    Article  PubMed  Google Scholar 

  5. Bruder G, Kayser J, Tenke C, Rabinowicz E, Friedman M, Amador X, Sharif Z, Gorman J (1998) The time course of visuospatial processing deficits in schizophrenia: an event-related brain potential study. J Abnorm Psychol 107(3):399–411

    Article  PubMed  CAS  Google Scholar 

  6. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1):195–208

    Article  PubMed  CAS  Google Scholar 

  7. Butler PD, Harkavy-Friedman JM, Amador XF, Gorman JM (1996) Backward masking in schizophrenia: relationship to medication status, neuropsychological functioning, and dopamine metabolishm. Biol Psychiatry 40(4):295–298

    Article  Google Scholar 

  8. Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, Schroeder CE, Javitt DC (2001) Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 158(7):1126–1133

    Article  PubMed  CAS  Google Scholar 

  9. Butler PD, Zemon V, Schechter I, Saperstein AM, Hoptman MJ, Lim KO, Revheim N, Silipo G, Javitt DC (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62(5):495–504

    Article  PubMed  Google Scholar 

  10. Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G, Mahoney J, Shpaner M, Jalbrzikowski M, Javitt DC (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130(Pt 2):417–430

    Article  PubMed  Google Scholar 

  11. Cabeza R, Anderson ND, Houle S, Mangels JA, Nyberg L (2000) Age-related differences in neural activity during item and temporal-order memory retrieval: a positron emission tomography study. J Cogn Neurosci 12(1):197–206

    Article  PubMed  CAS  Google Scholar 

  12. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17(1):85–100

    Article  PubMed  Google Scholar 

  13. Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17(3):1394–1402

    Article  PubMed  Google Scholar 

  14. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L (2004) Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex 14(4):364–375

    Article  PubMed  Google Scholar 

  15. Clarke M, O’Callaghan E (2003) Is earlier better? At the beginning of schizophrenia: timing and opportunities for early intervention. Psychiatr Clin North Am 26(1):65–83

    Article  PubMed  Google Scholar 

  16. Clarke M, Whitty P, Browne S, McTigue O, Kamali M, Gervin M, Kinsella A, Waddington JL, Larkin C, O’Callaghan E (2006) Untreated illness and outcome of psychosis. Br J Psychiatry 189:235–240

    Article  PubMed  Google Scholar 

  17. Clementz BA, Keil A, Kissler J (2004) Aberrant brain dynamics in schizophrenia: delayed buildup and prolonged decay of the visual steady-state response. Brain Res Cogn Brain Res 18(2):121–129

    Article  PubMed  Google Scholar 

  18. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates Publishers, Hillsdale, pp 8–13

    Google Scholar 

  19. Davenport ND, Sponheim SR, Stanwyck JJ (2006) Neural anomalies during visual search in schizophrenia patients and unaffected siblings of schizophrenia patients. Schizophr Res 82(1):15–26

    Article  PubMed  Google Scholar 

  20. De Sanctis P, Katz R, Wylie GR, Sehatpour P, Alexopoulos GS, Foxe JJ (2007) Enhanced and bilateralized visual sensory processing in the ventral stream may be a feature of normal aging. Neurobiol [Epub ahead of print]

  21. DiGirolamo GJ, Kramer AF, Barad V, Cepeda NJ, Weissman DH, Milham MP, Wszalek TM, Cohen NJ, Banich MT, Webb A, Belopolsky AV, McAuley E (2001) General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport 12(9):2065–2071

    Article  PubMed  CAS  Google Scholar 

  22. Doniger GM, Foxe JJ, Murray MM, Higgins BA, Javitt DC (2002) Imphaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatry 59(11):1011–1020

    Article  PubMed  Google Scholar 

  23. Donohoe G, Morris DW, De Sanctis P, Magno E, Montesi JL, Garavan HP, Robertson IH, Javitt DC, Gill M, Corvin AP, Foxe JJ (2008) Early visual processing deficits in dysbindin-associated schizophrenia. Biol Psychiatry 63(5):484–489

    Google Scholar 

  24. Foxe JJ, Doniger GM, Javitt DC (2001) Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. Neuroreport 12(17):3815–3820

    Article  PubMed  CAS  Google Scholar 

  25. Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining early visual processing. Exp Brain Res 142(1):139–150

    Article  PubMed  Google Scholar 

  26. Foxe JJ, Simpson GV (2005a) Biasing the brain’s attentional set: II. effects of selective intersensory attentional deployments on subsequent sensory processing. Exp Brain Res 166(3–4):393–401

    Article  PubMed  Google Scholar 

  27. Foxe JJ, Murray MM, Javitt DC (2005b) Filling-in in Schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15(12):1914–1927

    Article  PubMed  Google Scholar 

  28. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645

    Article  PubMed  Google Scholar 

  29. Haenschel C, Bittner MA, Haertling F, Rotarska-Jagiela A, Maurer K, Singer W, Linden DEJ (2007) Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia—a study with event-related potentials and functional magnetic resonance imaging. Arch Gen Psychiatry 64(11):1229–1240

    Article  PubMed  Google Scholar 

  30. Handy TC, Khoe W (2005) Attention and sensory gain control: a peripheral visual process? J Cogn Neurosci 17(12):1936–1349

    Article  PubMed  Google Scholar 

  31. Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75(6):511–527

    Article  PubMed  CAS  Google Scholar 

  32. Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, Gos A, Scherg M, Johannes S, Hundeshagen H et al (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372(6506):543–546

    Article  PubMed  CAS  Google Scholar 

  33. Johnston PJ, Stojanov W, Devir H, Schall U (2005) Functional MRI of facial emotion recognition deficits in schizophrenia and their electrophysiological correlates. Eur J Neurosci 22(5):1221–1232

    Article  PubMed  Google Scholar 

  34. Katsanis J, Iacono WG, Beiser M (1996) Visual event-related potentials in first-episode psychotic patients and their relatives. Psychophysiology 33(3):207–217

    Article  PubMed  CAS  Google Scholar 

  35. Keri S, Kelemen O, Janka Z, Benedek G (2005) Visual-perceptual dysfunctions are possible endophenotypes of schizophrenia: evidence from the psychophysical investigation of magnocellular and parvocellular pathways. Neuropsychology 19(5):649–656

    Article  PubMed  Google Scholar 

  36. Kim D, Wylie G, Pasternak R, Butler PD, Javitt DC (2006) Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res 82(1):1–8

    Article  PubMed  CAS  Google Scholar 

  37. Lalor EC, Kelly SP, Pearlmutter BA, Reilly RB, Foxe JJ (2007) Isolating endogenous visuo-spatial attentional effects using the novel visual-evoked spread spectrum analysis (VESPA) technique. Eur J Neurosci 26(12):3536–3542

    Article  PubMed  Google Scholar 

  38. Lalor EC, Pearlmutter BA, Reilly BA, Foxe JJ (2006) The VESPA: a method for the rapid estimation of a visual evoked potential. Neuroimage 32(4):1549–1561

    Article  PubMed  Google Scholar 

  39. Lalor EC, Yeap S, Reilly RB, Pearlmutter BA, Foxe JJ (2008) Dissecting the cellular contributions to early visual sensory processing deficits in schizophrenia using the VESPA evoked response. Schizophr Res 98(1–3):256–264

    Article  PubMed  Google Scholar 

  40. Langenecker SA, Nielson KA, Rao SM (2004) fMRI of healthy older adults during Stroop interference. Neuroimage 21(1):192–200

    Article  PubMed  Google Scholar 

  41. Loeb PA, Fe R (1996) ILS: Independent living scales manual. The Psychological Corporation, Harcourt Race Jonanovich, Inc, San Antonio

    Google Scholar 

  42. Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin Neurophysiol 75(6):528–542

    Article  CAS  Google Scholar 

  43. Malla AK, Norman RM, Manchanda R, Ahmed MR, Scholten D, Harricharan R, Cortese L, Takhar J (2002) One year outcome in first episode psychosis: influence of DUP and other predictors. Schizophr Res 54(3):231–242

    Article  PubMed  Google Scholar 

  44. Mangun GR, Buonocore MH, Girelli M, Jha AP (1998) ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 6(5–6):383–389

    Article  PubMed  CAS  Google Scholar 

  45. Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2(4):364–369

    Article  PubMed  CAS  Google Scholar 

  46. Matsuoka H, Saito H, Ueno T, Sato M (1996) Altered endogenous negativities of the visual event-related potential in remitted schizophrenia. Electroencephalogr Clin Neurophysiol 100(1):18–24

    Article  PubMed  CAS  Google Scholar 

  47. Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402

    Article  PubMed  CAS  Google Scholar 

  48. Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Brain Res Cogn Brain Res 14:115–128

    Article  PubMed  Google Scholar 

  49. Mukundan CR (1986) Middle latency components of evoked potential responses in schizophrenics. Biol Psychiatry 21(11):1097–1100

    Article  PubMed  CAS  Google Scholar 

  50. Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 39(8):828–844

    Article  PubMed  CAS  Google Scholar 

  51. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  52. Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  53. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187

    Article  PubMed  CAS  Google Scholar 

  54. Romani A, Zerbi F, Mariotti G, Callieco R, Cosi V (1986) Computed tomography and pattern reversal visual evoked potentials in chronic schizophrenic patients. Acta Psychiatr Scand 73(15):566–573

    Article  PubMed  CAS  Google Scholar 

  55. Rugg MD, Milner AD, Lines CR, Phalp R (1987) Modulation of visual event-related potentials by spatial and non-spatial visual selective attention. Neuropsychologia 25(1A):85–96

    Article  PubMed  CAS  Google Scholar 

  56. Schechter I, Butler PD, Silipo G, Zemon V, Javitt DC (2003) Magnocellular and parvocellular contributions to backward masking dysfunction in schizophrenia. Schizophr Res 64(2–3):91–101

    Article  PubMed  Google Scholar 

  57. Schechter I, Butler PD, Zemon VM, Revheim N, Saperstein AM, Jalbrzikowski M, Pasternak R, Silipo G, Javitt DC (2005) Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Clin Neurophysiol 116(9):2204–2215

    Article  PubMed  Google Scholar 

  58. Schwartz BD, Tomlin HR, Evans WJ, Ross KV (2001) Neurophysiologic mechanisms of attention: a selective review of early information processing in schizophrenics. Front Biosci 6:D120–134

    Article  PubMed  CAS  Google Scholar 

  59. Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23(19):7407–7411

    PubMed  CAS  Google Scholar 

  60. Spencer KM, Nestor PG, Perlmutter R, Niznikiewicz MA, Klump MC, Frumin M, Shenton ME, McCarley RW (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 101(49):17288–17293

    Article  PubMed  CAS  Google Scholar 

  61. Spitzer RL, Williams JB, Gibbon M, First MB (1992) The Structured Clinical Interview for DSM-III-R (SCID). I: History, rationale, and description. Arch Gen Psychiatry 49(8):624–629

    PubMed  CAS  Google Scholar 

  62. Sponheim SR, McGuire KA, Stanwyck JJ (2006) Neural anomalies during sustained attention in first-degree biological relatives of schizophrenia patients. Biol Psychiatry 60(3):242–252

    Article  PubMed  Google Scholar 

  63. Steinman BA, Steinman SB, Lehmkuhle S (1997) Transient visual attention is dominated by the magnocellular stream. Vision Res 37(1):17–23

    Article  PubMed  CAS  Google Scholar 

  64. Strandburg RJ, Marsh JT, Brown WS, Asarnow RF, Guthrie D, Higa J, Yee-Bradbury CM, Nuechterlein KH (1994) Reduced attention-related negative potentials in schizophrenic adults. Psychophysiology 31(3):272–281

    Article  PubMed  CAS  Google Scholar 

  65. van der Stelt O, Frye J, Lieberman JA, Belger A (2004) Impaired P3 generation reflects high-level and progressive neurocognitive dysfunction in schizophrenia. Arch Gen Psychiatry 61(3):237–248

    Article  PubMed  Google Scholar 

  66. Van Sweden B, Van Erp MG, Mesotten F, Crevits L (1998) Impaired early visual processing in disorganised schizophrenia. Acta Neurol Belg 98(1):17–20

    PubMed  Google Scholar 

  67. Vidyasagar TR (1999) A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Res Brain Res Rev 30(1):66–76

    Article  PubMed  CAS  Google Scholar 

  68. Wylie GR, Javitt DC, Foxe JJ (2003) Task switching: a high-density electrical mapping study. Neuroimage 20(4):2232–2242

    Article  Google Scholar 

  69. Yeap S, Kelly SP, Sahatpour P, Magno E, Javitt DS, Garavan H, Thakore JH, Foxe JJ (2006) Early visual sensory deficits as endophenotypes for schizophrenia: high density electrical mapping in clinically unaffected first-degree relatives. Arch Gen Psychiatry 63(11):1180–1188

    Article  Google Scholar 

  70. Zemon V, Kaplan E, Ratliff F (1980) Bicuculline enhances a negative component and diminishes a positive component of the visual evoked cortical potential in the cat. Proc Natl Acad Sci USA 77(12):7476–7478

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the Chief Executive Officer at St. Vincent’s Hospital, Mr. Edward Byrne and to the Director of Nursing, Mrs. Phil Burke, for their ongoing and essential support of the Cognitive Neurophysiology Laboratory. Thanks also go to Micheál Mac an tSionnaigh for his help in establishing and maintaining the laboratory, and to the nursing staff at St. Vincent’s hospital for their dedication to the patients and their ongoing support of this work. Grant Support: This work was supported in part by an RO1 grant from the U.S. National Institute of Mental Health (NIMH) to Professor Foxe (MH65350). Dr. Yeap was supported by a fellowship from the Irish Health Research Board (HRB). Dr. Magno was supported by a fellowship from the Irish Research Council for the Humanities and Social Sciences (IRCHSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Foxe PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeap, S., Kelly, S.P., Sehatpour, P. et al. Visual sensory processing deficits in Schizophrenia and their relationship to disease state. Eur Arch Psychiatry Clin Neurosc 258, 305–316 (2008). https://doi.org/10.1007/s00406-008-0802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-008-0802-2

Key words

Navigation