Skip to main content
Log in

Hippocampal shape deformity analysis in obsessive–compulsive disorder

  • ORIGINAL PAPER
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Abnormalities of orbital prefrontal cortex and caudate nuclei have, thus far, been the main findings regarding the pathophysiology of obsessive–compulsive disorder (OCD). On the other hand, neuroimaging studies have failed to reach a consensus with regard to the issue of hippocampal abnormalities in OCD patients. Shape analysis may facilitate a resolution of the discordance among these former studies by detecting local structural changes, thus enhancing power to discriminate structural differences. It has been suggested that neural circuitry interconnecting brain areas may critically influence the shape of neuroanatomical structures, serving as a rationale for better sensitivity of shape analysis compared to volume analysis, especially in detecting abnormalities of neural circuitry. Shape analysis of the hippocampus was performed in 22 matched pairs of OCD patients and normal control subjects. As a result, we observed a bilateral hippocampal shape deformity including the most prominent characteristic of downward displacement of the head. The hippocampal structural alteration observed in this study indicates that this structure may play a role in the pathophysiology of OCD. Also, further considering the hippocampal neural connections specific to its surface topography, these surface deformities may reflect developmental alterations in these patients with regard to the neural circuitry involving hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McGuire PK, Bench CJ, Frith CD, Marks IM, Frackowiak RS, Dolan RJ (1994) Functional anatomy of obsessive–compulsive phenomena. Br J Psychiatry 164:459–468

    Article  PubMed  CAS  Google Scholar 

  2. Kang DH, Kwon JS, Kim JJ, Youn T, Park HJ, Kim MS, Lee DS, Lee MC (2003) Brain glucose metabolic changes associated with neuropsychological improvements after 4 months of treatment in patients with obsessive–compulsive disorder. Acta Psychiatr Scand 107:291–297

    Article  PubMed  Google Scholar 

  3. Adler CM, McDonough-Ryan P, Sax KW, Holland SK, Arndt S, Strakowski SM (2000) fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J Psychiatr Res 34:317–324

    Article  PubMed  CAS  Google Scholar 

  4. Busatto GF, Zamignani DR, Buchpiguel CA, Garrido GE, Glabus MF, Rocha ET, Maia AF, Rosario-Campos MC, Campi Castro C, Furuie SS, Gutierrez MA, McGuire PK, Miguel EC (2000) A voxel-based investigation of regional cerebral blood flow abnormalities in obsessive–compulsive disorder using single photon emission computed tomography (SPECT). Psychiatry Res 99:15–27

    Article  PubMed  CAS  Google Scholar 

  5. Saxena S, Brody AL, Maidment KM, Smith EC, Zohrabi N, Katz E, Baker SK, Baxter LR Jr (2004) Cerebral glucose metabolism in obsessive–compulsive hoarding. Am J Psychiatry 161:1038–1048

    Article  PubMed  Google Scholar 

  6. Jenike MA, Breiter HC, Baer L, Kennedy DN, Savage CR, Olivares MJ, O’Sullivan RL, Shera DM, Rauch SL, Keuthen N, Rosen BR, Caviness VS, Filipek PA (1996) Cerebral structural abnormalities in obsessive–compulsive disorder. A quantitative morphometric magnetic resonance imaging study. Arch Gen Psychiatry 53:625–632

    PubMed  CAS  Google Scholar 

  7. Szeszko PR, Robinson D, Alvir JM, Bilder RM, Lencz T, Ashtari M, Wu H, Bogerts B (1999) Orbital frontal and amygdala volume reductions in obsessive–compulsive disorder. Arch Gen Psychiatry 56:913–919

    Article  PubMed  CAS  Google Scholar 

  8. Kwon JS, Shin YW, Kim CW, Kim YI, Youn T, Han MH, Chang KH, Kim JJ (2003) Similarity and disparity of obsessive–compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus-amygdala complex. J Neurol Neurosurg Psychiatry 74:962–964

    Article  PubMed  CAS  Google Scholar 

  9. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  PubMed  Google Scholar 

  10. Csernansky JG, Joshi S, Wang L, Haller JW, Gado M, Miller JP, Grenander U, Miller MI (1998) Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proc Natl Acad Sci USA 95:11406–11411

    Article  PubMed  CAS  Google Scholar 

  11. Shenton ME, Gerig G, McCarley RW, Szekely G, Kikinis R (2002) Amygdala-hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data. Psychiatry Res 115:15–35

    Article  PubMed  Google Scholar 

  12. Csernansky JG, Wang L, Jones D, Rastogi-Cruz D, Posener JA, Heydebrand G, Miller JP, Miller MI (2002) Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry 159:2000–2006

    Article  PubMed  Google Scholar 

  13. Frumin M, Golland P, Kikinis R, Hirayasu Y, Salisbury DF, Hennen J, Dickey CC, Anderson M, Jolesz FA, Grimson WE, McCarley RW, Shenton ME (2002) Shape differences in the corpus callosum in first-episode schizophrenia and first-episode psychotic affective disorder. Am J Psychiatry 159:866–868

    Article  PubMed  Google Scholar 

  14. Posener JA, Wang L, Price JL, Gado MH, Province MA, Miller MI, Babb CM, Csernansky JG (2003) High-dimensional mapping of the hippocampus in depression. Am J Psychiatry 160:83–89

    Article  PubMed  Google Scholar 

  15. Csernansky JG, Wang L, Joshi S, Miller JP, Gado M, Kido D, McKeel D, Morris JC, Miller MI (2000) Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Dementia of the Alzheimer type. Neurology 55:1636–1643

    PubMed  CAS  Google Scholar 

  16. Lee JM, Kim SH, Jang DP, Ha TH, Kim JJ, Kim IY, Kwon JS, Kim SI (2004) Deformable model with surface registration for hippocampal shape deformity analysis in schizophrenia. Neuroimage 22:831–840

    Article  PubMed  Google Scholar 

  17. Hollingshead AdB, Redlich FC (1958) Social class and mental illness; a community study. Wiley, New York

    Google Scholar 

  18. First MB, Spitzer RL, Gibbon M, Williams JBW (1996) Structured clinical interview for DSM-IV axis I disorders. Biometrics Research Department, New York State Psychiatric Institute, New York

    Google Scholar 

  19. Goodman WK, Price LH, Rasmussen SA, Mazure C, Delgado P, Heninger GR, Charney DS (1989a) The Yale-Brown obsessive compulsive scale. II. Validity. Arch Gen Psychiatry 46:1012–1016

    CAS  Google Scholar 

  20. Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Heninger GR, Charney DS (1989b) The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Arch Gen Psychiatry 46:1006–1011

    CAS  Google Scholar 

  21. Kim JJ, Youn T, Lee JM, Kim IY, Kim SI, Kwon JS (2003) Morphometric abnormality of the insula in schizophrenia: a comparison with obsessive–compulsive disorder and normal control using MRI. Schizophr Res 60:191–198

    Article  PubMed  Google Scholar 

  22. Pantel J, O’Leary DS, Cretsinger K, Bockholt HJ, Keefe H, Magnotta VA, Andreasen NC (2000) A new method for the in vivo volumetric measurement of the human hippocampus with high neuroanatomical accuracy. Hippocampus 10:752–758

    Article  PubMed  CAS  Google Scholar 

  23. MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12:340–356

    Article  PubMed  CAS  Google Scholar 

  24. Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743

    Article  PubMed  CAS  Google Scholar 

  25. Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511–533

    Article  PubMed  CAS  Google Scholar 

  26. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    Article  PubMed  CAS  Google Scholar 

  27. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220–242

    Article  PubMed  CAS  Google Scholar 

  28. Lepage M, Habib R, Tulving E (1998) Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus 8:313–322

    Article  PubMed  CAS  Google Scholar 

  29. Dolan RJ, Fletcher PF (1999) Encoding and retrieval in human medial temporal lobes: an empirical investigation using functional magnetic resonance imaging (fMRI). Hippocampus 9:25–34

    Article  PubMed  CAS  Google Scholar 

  30. Savage CR, Deckersbach T, Wilhelm S, Rauch SL, Baer L, Reid T, Jenike MA (2000) Strategic processing and episodic memory impairment in obsessive compulsive disorder. Neuropsychology 14:141–151

    Article  PubMed  CAS  Google Scholar 

  31. Shin MS, Park SJ, Kim MS, Lee YH, Ha TH, Kwon JS (2004) Deficits of organizational strategy and visual memory in obsessive–compulsive disorder. Neuropsychology 18:665–672

    Article  PubMed  CAS  Google Scholar 

  32. Moritz S, Jacobsen D, Willenborg B, Jelinek L, Fricke S (2006) A check on the memory deficit hypothesis of obsessive–compulsive checking. Eur Arch Psychiatry Clin Neurosci 256:82–86

    Article  PubMed  Google Scholar 

  33. Savage CR, Baer L, Keuthen NJ, Brown HD, Rauch SL, Jenike MA (1999) Organizational strategies mediate nonverbal memory impairment in obsessive–compulsive disorder. Biol Psychiatry 45:905–916

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (M103KV010007 03K2201 00710) from Brain Research Center of the 21st Century Frontier Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Soo Kwon MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.B., Shin, YW., Kim, S.H. et al. Hippocampal shape deformity analysis in obsessive–compulsive disorder. Eur Arch Psychiatry Clin Neurosci 257, 185–190 (2007). https://doi.org/10.1007/s00406-006-0655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-006-0655-5

Keywords

Navigation