Skip to main content
Log in

Systematic review and meta-analysis of Sniffin Sticks Test performance in Parkinson’s disease patients in different countries

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Introduction

Olfaction impairment occurs in about 90% of patients with Parkinson’s disease. The Sniffin Sticks Test is a widely used instrument to measure olfactory performance and is divided into three subtests that assess olfactory threshold, discrimination and identification. However, cultural and socioeconomic differences can influence test performance.

Objectives

We performed a systematic review and meta-analysis of the existent data about Sniffin Sticks Test performance of Parkinson’s disease patients and healthy controls in different countries and investigated if there are other cofactors which could influence the olfactory test results. A subgroup analysis by country was performed as well as a meta-regression using age, gender and air pollution as covariates.

Results

Four hundred and thirty studies were found and 66 articles were included in the meta-analysis. Parkinson’s disease patients showed significantly lower scores on the Sniffin Sticks Test and all its subtests than healthy controls. Overall, the heterogeneity among studies was moderate to high as well as the intra-country heterogeneity. The subgroup analysis, stratifying by country, maintained a high residual heterogeneity.

Conclusion

The meta-regression showed a significant correlation with age and air pollution in a few subtests. A high heterogeneity was found among studies which was not significantly decreased after subgroup analysis by country. This fact signalizes that maybe cultural influence has a small impact on the Sniffin Sticks Test results. Age and air pollution have influence in a few olfactory subtests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tanner CM, Goldman SM (1996) Epidemiology of Parkinson’s Disease. Neuroepidemiology 14(2):317–335

    CAS  Google Scholar 

  2. Deeb J, Shah M, Muhammed N, Gunasekera R, Gannon K, Findley LJ, Hawkes CH (2010) A basic smell test is as sensitive as a dopamine transporter scan: comparison of olfaction, taste and DaTSCAN in the diagnosis of Parkinson's disease. QJM. 103(12):941–952. https://doi.org/10.1093/qjmed/hcq142

    CAS  PubMed  Google Scholar 

  3. Nielsen T, Jensen MB, Stenager E, Andersen AD (2018) The use of olfactory testing when diagnosing Parkinson’s disease—a systematic review. Dan Med J 65(5):5481

    Google Scholar 

  4. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601

    Google Scholar 

  5. Doty RL, Shaman P, Kimmelman CP, Dann MS (1984) University of Pennsylvania smell identification test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 94:176–178

    CAS  PubMed  Google Scholar 

  6. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’’ Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3000 subjects”. Eur Arch Oto-Rhino-Laryngology 264(3):237–243

    CAS  Google Scholar 

  7. Hummel T, Kati G, Dresden R, Claus-Gunther G, Dresden K, Kobal GG (2001) Screening of olfactory function with a four-minute odor identification test: reliability, normative data, and investigations in patients with olfactory loss. Ann Oral Rhinol Laiyngol 110(10):976–981

    CAS  Google Scholar 

  8. Kim JSES, Oh E, Park J, Youn J, Jang W (2018) Serum 25-hydroxyvitamin D3 level may be associated with olfactory dysfunction in de novo Parkinson’s disease. J Clin Neurosci. https://doi.org/10.1016/j.jocn.2018.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park JW, Kwon DY, Choi JH, Park MH, Yoon HK (2018) Olfactory dysfunctions in drug-naïve Parkinson’s disease with mild cognitive impairment. Park Relat Disord 46:69–73. https://doi.org/10.1016/j.parkreldis.2017.11.334

    Article  Google Scholar 

  10. Oh E, Park J, Youn J, Kim JS, Park S, Jang W (2017) Olfactory dysfunction in early Parkinson’s disease is associated with short latency afferent inhibition reflecting central cholinergic dysfunction. Clin Neurophysiol 128(6):1061–8. https://doi.org/10.1016/j.clinph.2017.03.011

    Article  PubMed  Google Scholar 

  11. Pinkhardt EH, Liu H, Ma D, Chen J, Pachollek A, Kunz MS et al (2019) Olfactory screening of Parkinson’s Disease patients and healthy subjects in China and Germany: a study of cross-cultural adaptation of the Sniffin’ Sticks 12-identification test. PLoS One. https://doi.org/10.1371/journal.pone.0224331

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen W, Chen S-DSS-D, Kang W-Y, Li B, Xu Z-M, Xiao Q et al (2012) Application of odor identification test in Parkinson’s disease in China: a matched case-control study. J Neurol Sci 316(1–2):47–50

    PubMed  Google Scholar 

  13. Guducu C, Taslica S, Cakmur R, Ozgoren M, Ikiz AO, Oniz A et al (2015) Assessing olfactory function in Parkinson’s disease via entropy analysis of chemosensory event related potentials. Tohoku J Exp Med 237(2):111–6

    CAS  PubMed  Google Scholar 

  14. Antsov E, Silveira-Moriyama L, Kilk S, Kadastik-Eerme L, Toomsoo T, Lees A et al (2014) Adapting the Sniffin’ Sticks olfactory test to diagnose Parkinson’s disease in Estonia. Mov Disord. https://doi.org/10.1016/j.parkreldis.2014.04.012

    Article  Google Scholar 

  15. Silveira-Moriyama L, Sirisena D, Gamage P, Gamage R, de Silva R, Lees AJ (2009) Adapting the Sniffin’ Sticks to diagnose Parkinson’s disease in Sri Lanka. Mov Disord 24(8):1229–33

    PubMed  Google Scholar 

  16. Fjaeldstad A, Kjaergaard T, Van Hartevelt TJ, Moeller A, Kringelbach ML, Ovesen T (2015) Olfactory screening: validation of Sniffin’ Sticks in Denmark. Clin Otolaryngol 40(6):545–550

    CAS  PubMed  Google Scholar 

  17. Neumann C, Tsioulos K, Merkonidis C, Salam M, Clark A, Philpott C (2012) Validation study of the “Sniffin’’ Sticks" olfactory test in a British population: a preliminary communication”. Clin Otolaryngol 37(1):23–27

    CAS  PubMed  Google Scholar 

  18. Konstantinidis I, Printza A, Genetzaki S, Mamali K, Kekes G, Constantinidis J (2008) Cultural adaptation of an olfactory identification test: The Greek version of Sniffin’ Sticks. Rhinology 46(4):292–296

    CAS  PubMed  Google Scholar 

  19. Rodríguez-Violante M, Gonzalez-Latapi P, Camacho-Ordoñez A, Martínez-Ramírez D, Morales-Briceño H, Cervantes-Arriaga A (2014) Comparing the accuracy of different smell identification tests in Parkinson’s disease: relevance of cultural aspects. Clin Neurol Neurosurg. 123:9–14. https://doi.org/10.1016/j.clineuro.2014.04.030

    Article  PubMed  Google Scholar 

  20. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339(7716):332–336

    Google Scholar 

  21. Omoto S, Mori E, Fujioka K, Tsubota A, Kita J, Kinoshita M et al (2017) A novel device for estimating olfactory threshold for differential diagnosis of parkinsonian syndrome: a pilot study. J Neurol Sci 381:722

    Google Scholar 

  22. Lawton M, Hu MTM, Baig F, Ruffmann C, Barron E, Swallow DMA et al (2016) Equating scores of the University of Pennsylvania smell identification test and Sniffin’ Sticks test in patients with Parkinson’s disease. Park Relat Disord. 33:96–101

    Google Scholar 

  23. Baba T, Kikuchi A, Hirayama K, Nishio Y, Hosokai Y, Kanno S et al (2012) Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: a 3 year longitudinal study. Brain 135(1):161–169

    PubMed  Google Scholar 

  24. Fullard ME, Tran B, Xie SX, Toledo JB, Scordia C, Linder C et al (2016) Olfactory impairment predicts cognitive decline in early Parkinson’s disease. Park Relat Disord 1(25):45–51

    Google Scholar 

  25. Camargo CHF, Jobbins VA, Serpa RA, Berbetz FA, Sabatini JS, Teive HAG (2018) Association between olfactory loss and cognitive deficits in Parkinson’s disease. Clin Neurol Neurosurg 1(173):120–123

    Google Scholar 

  26. Rossi M, Perez-Lloret S, Millar Vernetti P, Drucaroff L, Costanzo E, Ballesteros D et al (2015) Olfactory dysfunction evaluation is not affected by comorbid depression in Parkinson’s Disease. Mov Disord 30(9):1275–1279

    PubMed  Google Scholar 

  27. Millar Vernetti P, Perez Lloret S, Rossi M, Cerquetti D, Merello M (2012) Validation of a new scale to assess olfactory dysfunction in patients with Parkinson’s disease. Park Relat Disord. https://doi.org/10.1016/j.parkreldis.2011.12.001

    Article  Google Scholar 

  28. TerrobaChambi C, Rossi M, Bril A, Vernetti PM, Cerquetti D, Cammarota A et al (2017) Diagnostic value of combined acute levodopa challenge and olfactory testing to predict Parkinson’s Disease. Mov Disord Clin Pract 4(6):824–828

    Google Scholar 

  29. Rossi M, Perez-Lloret S, Millar P, Drucaroff L, Costanzo E, Ballesteros D et al (2014) Depression as a confounding factor for hyposmia evaluation in Parkinson’s disease patients. Mov Disord. https://doi.org/10.1002/mds.26276

    Article  PubMed  Google Scholar 

  30. Evans AH, Chai CH (2016) Evaluation of nonmotor symptoms in diagnosis of Parkinsonism and tremor. Parkinsons Dis. https://doi.org/10.1155/2016/9182946

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scherfler C, Esterhammer R, Nocker M, Mahlknecht P, Stockner H, Warwitz B et al (2013) Correlation of dopaminergic terminal dysfunction and microstructural abnormalities of the basal ganglia and the olfactory tract in Parkinson’s disease. Brain 136(10):3028–37

    PubMed  Google Scholar 

  32. Krismer F, Pinter B, Mueller C, Mahlknecht P, Nocker M, Reiter E et al (2016) Sniffing the diagnosis: Olfactory testing in neurodegenerative Parkinsonism. Mov Disord. https://doi.org/10.1016/j.parkreldis.2016.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mahlknecht P, Pechlaner R, Boesveldt S, Volc D, Pinter B, Reiter E et al (2016) Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson’s disease. Mov Disord 31(9):1408–1413

    PubMed  PubMed Central  Google Scholar 

  34. Santin R, Fonseca VF, Bleil CB, Rieder CRM, Hilbig A (2010) Olfactory function and Parkinson’s disease in Southern Brazil. Arq Neuropsiquiatr 68(2):252–257

    PubMed  Google Scholar 

  35. Cury R, Carvalho M, Santos Ghilardi MG, Estevo A, De Paiva A, Lopez F et al (2017) Effects of deep brain Stimulation on olfactory function in Parkinson’s disease. Mov Disord. 32:236–8

    Google Scholar 

  36. Moscovich M, Moro A, Munhoz R, Teive HG, Moryiama L (2016) Olfaction analysis in spinocerebellar ataxia type 10 and type 3 comparing with healthy controls and PD. Mov Disord. https://doi.org/10.7916/tohm.v0.682

    Article  Google Scholar 

  37. Tremblay C, Durand Martel P, Frasnelli J (2017) Trigeminal system in Parkinson’s disease: a potential avenue to detect Parkinson-specific olfactory dysfunction. Park Relat Disord 44:85–90. https://doi.org/10.1016/j.parkreldis.2017.09.010

    Article  Google Scholar 

  38. Parrao T, Chana P, Venegas P, Behrens MI, Aylwin ML (2012) Olfactory deficits and cognitive dysfunction in Parkinson’s disease. Neurodegener Dis 10(1–4):179–82

    PubMed  Google Scholar 

  39. Wang Y, Wu JJ, Liu FT, Chen K, Chen C, Luo SS et al (2017) Olfaction in Parkin carriers in Chinese patients with Parkinson disease. Brain Behav 7(5):1–7

    Google Scholar 

  40. Li D-K, Liu F-T, Chen K, Bu L-L, Yang K, Chen C et al (2018) Depressive symptoms are associated with color vision but not olfactory function in patients with Parkinson’s disease. J Neuropsychiatry Clin Neurosci 30(2):122–9

    PubMed  Google Scholar 

  41. Huang SF, Chen K, Wu JJ, Liu FT, Zhao J, Lin W et al (2016) Odor identification test in idiopathic REM-behavior disorder and Parkinson’s disease in China. PLoS One 11(8):1–13

    Google Scholar 

  42. Chen W, Kang WY, Chen S, Wang Y, Xiao Q, Wang G et al (2015) Hyposmia correlates with SNCA variant and non-motor symptoms in Chinese patients with Parkinson’s disease. Park Relat Disord. https://doi.org/10.1016/j.parkreldis.2015.03.021

    Article  Google Scholar 

  43. Wang X-Y, Han Y-Y, Li G, Zhang B (2019) Association between autonomic dysfunction and olfactory dysfunction in Parkinson’s disease in southern Chinese. BMC Neurol 19(1):17

    PubMed  PubMed Central  Google Scholar 

  44. Lin YQ, Cui SS, Du JJ, Li G, He YX, Zhang PC et al (2019) N1 and P1 components associate with visuospatial-executive and language functions in normosmic Parkinson’s disease: an event-related potential study. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00018

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang RD (2016) Iron metabolism in parkinson’s disease patients with olfactory disorder. J Am Geriatr Soc. https://doi.org/10.1007/BF03033302

    Article  PubMed  PubMed Central  Google Scholar 

  46. Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Haase A-M, Svendsen KB et al (2019) Objective intestinal function in patients with idiopathic REM sleep behavior disorder. Park Relat Disord 58:28–34

    Google Scholar 

  47. Antsov E, Silveira-Moriyama L, Kilk S, Kadastik-Eerme L, Toomsoo T, Lees A et al (2014) Adapting the Sniffin’ Sticks olfactory test to diagnose Parkinson’s disease in Estonia. Park Relat Disord 20(8):830–3. https://doi.org/10.1016/j.parkreldis.2014.04.012

    Article  Google Scholar 

  48. Busse K, Heilmann R, Kleinschmidt S, Abu-Mugheisib M, Höppner J, Wunderlich C et al (2012) Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J Neurol Neurosurg Psychiatry 83(4):441–447

    PubMed  Google Scholar 

  49. Brockmann K, Srulijes K, Hauser AK, Schulte C, Csoti I, Gasser T et al (2011) GBA-associated PD presents with nonmotor characteristics. Neurology 77(3):276–80

    CAS  PubMed  Google Scholar 

  50. Casjens S, Eckert A, Woitalla D, Ellrichmann G, Turewicz M, Stephan C et al (2013) Diagnostic value of the impairment of olfaction in Parkinson’s Disease. PLoS One. https://doi.org/10.1371/journal.pone.0064735

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kalampokini S, Lyros E, Luley M, Schöpe J, Spiegel J, Bürmann J et al (2018) Facial emotion recognition in Parkinson’s disease: association with age and olfaction. J Clin Exp Neuropsychol 40(3):274–84

    CAS  PubMed  Google Scholar 

  52. Paschen L, Schmidt N, Wolff S, Cnyrim C, van Eimeren T, Zeuner KE et al (2015) The olfactory bulb volume in patients with idiopathic Parkinson’s disease. Eur J Neurol 22(7):1068–1073

    CAS  PubMed  Google Scholar 

  53. Wolz M, Hähner A, Meixner L, Löhle M, Reichmann H, Hummel T et al (2014) Accurate detection of parkinson’s disease in tremor syndromes using olfactory testing. Eur Neurol 72(1–2):1–6

    PubMed  Google Scholar 

  54. Haehner A, Tosch C, Wolz M, Klingelhoefer L, Fauser M, Storch A et al (2013) Olfactory Training in Patients with Parkinson’s Disease. PLoS One. https://doi.org/10.1371/journal.pone.0061680

    Article  PubMed  PubMed Central  Google Scholar 

  55. Haehner A, Hummel T, Wolz M, Klingelhofer L, Fauser M, Storch A et al (2013) Effects of rasagiline on olfactory function in patients with Parkinson’s disease. Mov Disord. https://doi.org/10.1002/central/CN-00871919/full

    Article  PubMed  Google Scholar 

  56. Löhle M, Wolz M, Beuthien-Baumann B, Oehme L, van den Hoff J, Kotzerke J et al (2020) Olfactory dysfunction correlates with putaminal dopamine turnover in early de novo Parkinson’s disease. J Neural Transm 127(1):9–16

    PubMed  Google Scholar 

  57. Iannilli E, Stephan L, Hummel T, Reichmann H, Haehner A (2017) Olfactory impairment in Parkinson’s disease is a consequence of central nervous system decline. J Neurol. 264(6):1236–46

    PubMed  Google Scholar 

  58. Ortiz J, Medina A, Pineda H, Gomez P, Medina R, Avila C (2018) Implementation of sniffin sticks test in Honduran patients with Parkinson’s disease: a matched case control study. Mov Disord. 33: S102–S102

  59. George J, Jose T, Behari M (2013) Use of Indian smell identification test for evaluating olfaction in idiopathic Parkinson’s disease patients in India. Neurol India 61(4):365–70

    PubMed  Google Scholar 

  60. Cecchini MP, Osculati F, Ottaviani S, Boschi F, Fasano A, Tinazzi M et al (2014) Taste performance in Parkinson’s disease. J Neural Transm 121(2):119–22

    PubMed  Google Scholar 

  61. Masala C, Solla P, Liscia A, Defazio G, Saba L, Cannas A et al (2018) Correlation among olfactory function, motors’ symptoms, cognitive impairment, apathy, and fatigue in patients with Parkinson’s disease. J Neurol. https://doi.org/10.1007/s00415-018-8913-9

    Article  PubMed  Google Scholar 

  62. Solla P, Masala C, Cannas A, Defazio G (2018) Gender differences in olfactory dysfunctions in Sardinian patients affected by Parkinson’s disease. Mov Disord. https://doi.org/10.1136/jnnp.2006.103788

    Article  Google Scholar 

  63. Passali GC, Bove F, Vargiu L, Bentivoglio AR, Anzivino R, De Corso E et al (2017) New olfactometric findings in Parkinson’s disease. Clin Otolaryngol 42(4):837–43

    CAS  PubMed  Google Scholar 

  64. Cecchini MP, Federico A, Zanini A, Mantovani E, Masala C, Tinazzi M et al (2019) Olfaction and taste in Parkinson’s disease: the association with mild cognitive impairment and the single cognitive domain dysfunction. J Neural Transm. https://doi.org/10.1007/s00702-019-01996-z

    Article  PubMed  Google Scholar 

  65. Ferraris A, Ialongo T, Passali GC, Pellecchia MT, Brusa L, Laruffa M et al (2009) Olfactory dysfunction in Parkinsonism caused by PINK1 mutations. Mov Disord. 24(16):2350–7

    PubMed  Google Scholar 

  66. Solla P, Masala C, Liscia A, Piras R, Ercoli T, Fadda L et al (2020) Sex-related differences in olfactory function and evaluation of possible confounding factors among patients with Parkinson’s disease. J Neurol 267(1):57–63

    CAS  PubMed  Google Scholar 

  67. De Rosa A, Nettore IC, Cantone E, Maione L, Desiderio S, Peluso S et al (2019) The flavor test is a sensitive tool in identifying the flavor sensorineural dysfunction in Parkinson’s disease. Neurol Sci 40(7):1351–6

    PubMed  Google Scholar 

  68. Yoritaka A, Shimo Y, Shimo Y, Inoue Y, Yoshino H, Hattori N (2011) Nonmotor symptoms in patients with PARK2 mutations. Parkinson’s Dis. https://doi.org/10.4061/2011/473640

    Article  Google Scholar 

  69. Boesveldt S, De Muinck Keizer RJO, Wolters EC, Berendse HW (2009) Odor recognition memory is not independently impaired in Parkinson’s disease. J Neural Transm 116(5):575–578

    PubMed  Google Scholar 

  70. Verbaan D, Boesveldt S, van Rooden SM, Visser M, Marinus J, Macedo MG et al (2008) Is olfactory impairment in Parkinson disease related to phenotypic or genotypic characteristics? Neurology 71(23):1877–82

    CAS  PubMed  Google Scholar 

  71. Boesveldt S, de Muinck Keizer RJO, Knol DL, Wolters EC, Berendse HW (2009) Extended testing across, not within, tasks raises diagnostic accuracy of smell testing in Parkinson’s disease. Mov Disord 24(1):85–90

    PubMed  Google Scholar 

  72. Boesveldt S, Verbaan D, Knol DL, Visser M, van Rooden SM, van Hilten JJ et al (2008) A comparative study of odor identification and odor discrimination deficits in Parkinson’s disease. Mov Disord 23(14):1984–1990

    PubMed  Google Scholar 

  73. Roos DS, Oranje OJM, Freriksen AFD, Berendse HW, Boesveldt S (2018) Flavor perception and the risk of malnutrition in patients with Parkinson’s disease. J Neural Transm 125(6):925–30

    PubMed  Google Scholar 

  74. Sienkiewicz-Jarosz H, Scinska A, Swiecicki L, Lipczynska-Lojkowska W, Kuran W, Ryglewicz D et al (2013) Sweet liking in patients with Parkinson’s disease. J Neurol Sci 329(1–2):17–22

    PubMed  Google Scholar 

  75. Izhboldina O, Zhukova I, Zhukova N, Alifirova V, Latypova A, Nikitina M et al (2016) Dophaminergic therapy and its influence on the olfactory function of patients with Parkinson’s disease [abstract]. Mov Disord 31:S127–S127 

    Google Scholar 

  76. Yang H-J, Kim YE, Yun JY, Kim H-J, Jeon BS (2014) Identifying the clusters within nonmotor manifestations in early Parkinson’s disease by using unsupervised cluster analysis. PLoS One. https://doi.org/10.1371/journal.pone.0091906

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lopez Hernandez N, Garcia Escriva A, Shalabi Benavent M (2015) Diagnostic value of combined assessment of olfaction and sustantia nigra hyperechogenicity for Parkinson’s disease. Neurologia 30(8):496–501

    CAS  PubMed  Google Scholar 

  78. Cozac VV, Auschra B, Chaturvedi M, Gschwandtner U, Hatz F, Meyer A et al (2017) Among early appearing non-motor signs of parkinson’s disease, alteration of olfaction but not electroencephalographic spectrum correlates with motor function. Front Neurol. https://doi.org/10.3389/fneur.2017.00545/full

    Article  PubMed  PubMed Central  Google Scholar 

  79. Meusel T, Westermann B, Fuhr P, Hummel T, Welge-Lussen A (2010) The course of olfactory deficits in patients with Parkinson’s disease—a study based on psychophysical and electrophysiological measures. Neurosci Lett 486(3):166–70

    CAS  PubMed  Google Scholar 

  80. Kijjavijit T, Jagota P, Boonrod N, Kaewwilai L, Jitkritsadakul O, Bhidayasiri R (2014) The use of Sniffin’ Stick-16 smell identification test in Thai Parkinson’s disease patients: a pilot study. Mov Disord 29:S48

    Google Scholar 

  81. Saatçi Ö, Yılmaz NH, Zırh A, Yulug B (2019) The therapeutic effect of deep brain stimulation on olfactory functions and clinical scores in Parkinson’s disease. J Clin Neurosci 68:55–61

    PubMed  Google Scholar 

  82. Barber TR, Lawton M, Rolinski M, Evetts S, Baig F, Ruffmann C et al (2017) Prodromal Parkinsonism and neurodegenerative risk stratification in REM sleep behavior disorder. Sleep 40(8):11–13

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: ST, BSFO, CRMR. Acquisition of data: ST, BSFO, YFFB. Drafting the article: ST, BSFO. Revising the article for important intellectual content: ST, BSFO, YFFB, CRMR. Approval of article and agreement for submission: ST, BSFO, YFFB, CRMR. All the co-authors listed above gave their final approval of this manuscript version.

Corresponding author

Correspondence to Sheila Trentin.

Ethics declarations

Conflicts of interest

The authors disclose no conflicts of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trentin, S., Fraiman de Oliveira, B.S., Ferreira Felloni Borges, Y. et al. Systematic review and meta-analysis of Sniffin Sticks Test performance in Parkinson’s disease patients in different countries. Eur Arch Otorhinolaryngol 279, 1123–1145 (2022). https://doi.org/10.1007/s00405-021-06970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-06970-8

Keywords

Navigation