Skip to main content
Log in

The identification of induction chemo-sensitivity genes of laryngeal squamous cell carcinoma and their clinical utilization

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

To identify potential molecular markers for induction chemotherapy of Laryngeal squamous cell carcinoma (LSCC).

Methods

Differently expressed genes between chemo-sensitive group (seven cases) and chemo-insensitive (five cases) group after induction chemotherapy by TPF were identified by microarrays. Bayes network and Random forest analyses were employed to identify core genes for induction chemotherapy. The diagnostic value of these core genes was also evaluated by ROC analysis.

Results

Six genes (SPP1, FOLR3, KYNU, LOC653219, ADH7 and XAGE1A) are highly expressed, while seven gene (CADM1, NDUFA4L2, CCND2, RARRES3, ERAP2, LYD6 and CNTNAP2) present significantly low expression. Among these genes, genes CADM1, FOLR3, KYNU, and CNTNAP2 are core candidates for LSCC chemo-sensitivity. And that the low expression of CADM1 may result in chemo-sensitivity, which leads to high expression of gene FOLR3 and KYNU, and low expression of gene CNTNAP2. Besides, ROC analysis shows that these four genes exhibit effective diagnostic value for induction chemo-sensitivity.

Conclusions

CADM1 may be a potential molecular marker for LSCC induction chemotherapy, while CADM1, FOLR3, KYNU, and CNTNAP2 may provide essential guidance for LSCC diagnosis and follow-up treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mcguire S (2016) World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr 7:418–419

    Article  Google Scholar 

  2. Joanna J, Marcin S, Magdalena KP, Kinga B, Julia P, Joanna J, Reidar G, Krzysztof S, Malgorzata W, Maciej G (2015) Global miRNA expression profiling identifies miR-1290 as novel potential oncomiR in laryngeal carcinoma. Plos One 10:e0144924

    Article  Google Scholar 

  3. Rudolph E, Dyckhoff G, Becher H, Dietz A, Ramroth H (2011) Effects of tumour stage, comorbidity and therapy on survival of laryngeal cancer patients: a systematic review and a meta-analysis. Eur Arch Otorhinolaryngol 268:165–179

    Article  Google Scholar 

  4. Chu EA, Kim YJ (2008) Laryngeal cancer: diagnosis and preoperative work-up. Otolaryngol Clin North Am 41:673–695

    Article  Google Scholar 

  5. Marioni G (2012) Essentials for an updated epidemiology of laryngeal carcinoma. Cancer Treat Rev 38:559–559

    Article  Google Scholar 

  6. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  Google Scholar 

  7. Zhang SY, Lu ZM, Luo XN, Chen LS, Ge PJ, Song XH, Chen S, Wu YL (2013) Correction: retrospective analysis of prognostic factors in 205 patients with laryngeal squamous cell carcinoma who underwent surgical treatment. Plos One 8:95–98

    Google Scholar 

  8. Corry J, Rischin D, Cotton S, D’Costa I, Chua M, Vallance N, Lyons B, Kleid S, Sizeland A, Peters LJ (2011) Larynx preservation with primary non-surgical treatment for loco-regionally advanced larynx cancer. J Med Imaging Radiat Oncol 55:229–235

    Article  Google Scholar 

  9. Kulc’Ar ZKMD, Konic-Carnelutti Z (1975) Epidemiology of laryngeal cancer. Laryngoscope 85:1155–1161

    Article  Google Scholar 

  10. Siegel R, Ms DNM, Dvm AJ (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  Google Scholar 

  11. Devlin JG, Langer CJ (2007) Combined modality treatment of laryngeal squamous cell carcinoma. Expert Rev Anticancer Ther 7:331–350

    Article  CAS  Google Scholar 

  12. Lefebvre JL (2006) Laryngeal preservation in head and neck cancer: multidisciplinary approach. Lancet Oncol 7:747–755

    Article  Google Scholar 

  13. Vermorken JB, Remenar E, Van HC, Gorlia T, Mesia R, Degardin M, Stewart JS, Jelic S, Betka J, Preiss JH (2007) Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med 357:1695–1704

    Article  CAS  Google Scholar 

  14. Argiris A (2005) Induction chemotherapy for head and neck cancer: will history repeat itself? J Natl Compr Cancer Netw JNCCN 3:393–403

    Article  Google Scholar 

  15. Xu CZ, Xie J, Jin B, Chen XW, Sun ZF, Wang BX, Dong P (2013) Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line. Int J Clin Exp Pathol 6:1351–1361

    PubMed  PubMed Central  Google Scholar 

  16. Keil E, HÖcker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I (2013) Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ 20:321–332

    Article  CAS  Google Scholar 

  17. Yim WC, Min K, Jung D, Lee BM, Kwon Y (2011) Cross experimental analysis of microarray gene expression data from volatile organic compounds treated targets. Mol Cell Toxicol 7:233–241

    Article  CAS  Google Scholar 

  18. Nambiar PR, Boutin SR, Raja R, Rosenberg DW (2005) Global gene expression profiling: a complement to conventional histopathologic analysis of neoplasia. Vet Pathol 42:735–752

    Article  CAS  Google Scholar 

  19. Colombo J, Fachel AA, De FCM, Cury PM, Fukuyama EE, Tajara EH, Cordeiro JA, Verjovskialmeida S, Reis EM, Rahal P (2009) Gene expression profiling reveals molecular marker candidates of laryngeal squamous cell carcinoma. Oncol Rep 21:649–663

    CAS  PubMed  Google Scholar 

  20. Lian M, Fang J, Han D, Ma H, Feng L, Wang R, Yang F (2013) Microarray gene expression analysis of tumorigenesis and regional lymph node metastasis in laryngeal squamous cell carcinoma. Plos One 8(12):e84854

    Article  Google Scholar 

  21. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    Article  CAS  Google Scholar 

  22. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–25

    Article  Google Scholar 

  23. Mcardle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  24. Jiang Y, Zhang R, Lv H, Li J, Wang M, Chang Y, Lv W, Xin S, Zhang J, Liu P (2013) HGPGD: the human gene population genetic difference database. Plos One 8:e64150

    Article  Google Scholar 

  25. Consortium TGO (2008) The gene ontology project in 2008. Nucleic Acids Res 36:440–444

    Article  Google Scholar 

  26. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34

    Article  Google Scholar 

  27. Wahde M, Hertz J (2000) Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 55:129–136

    Article  CAS  Google Scholar 

  28. Breiman L (2001) Random forest. Mach Learn 45:5–32

    Article  Google Scholar 

  29. Parker SL, Tong T, Bolden S, Wingo PA (1996) Cancer statistics for African Americans, 1996. CA Cancer J Clin 46:113–125

    Article  Google Scholar 

  30. Chen X, Liu X, Wu Q (2013) Biological effects of liposome-mediated MAPK ASO on human laryngeal cancer cell Hep-2. Int J Lab Med 34:2073–2077

    CAS  Google Scholar 

  31. Xu CZ, Shi RJ, Chen D, Sun YY, Wu QW, Wang T, Wang PH (2013) Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell. Int J Clin Exp Pathol 6:2745–2756

    PubMed  PubMed Central  Google Scholar 

  32. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  CAS  Google Scholar 

  33. Cavallaro U, Christofori G (2016) Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta 1552:39–45

    Google Scholar 

  34. Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153:333–339

    Article  CAS  Google Scholar 

  35. Yamada D, Yoshida M, Williams YN, Fukami T, Kikuchi S, Masuda M, Maruyama T, Ohta T, Nakae D, Maekawa A (2006) Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1/IGSF4, an immunoglobulin superfamily cell adhesion molecule. Mol Cell Biol 26:3610–3624

    Article  CAS  Google Scholar 

  36. Shingai T, Ikeda W, Kakunaga S, Morimoto K, Takekuni K, Itoh S, Satoh K, Takeuchi M, Imai T, Monden M (2003) Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem 278:773–787

    Article  Google Scholar 

  37. Mao X, Seidlitz E, Truant R, Hitt M, Ghosh HP (2004) Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene 23:5632–5642

    Article  CAS  Google Scholar 

  38. Chen K, Wang G, Peng L, Liu S, Fu X, Zhou Y, Yu H, Li A, Li J, Zhang S (2015) CADM1/TSLC1 inactivation by promoter hypermethylation is a frequent event in colorectal carcinogenesis and correlates with late stages of the disease. Int J Cancer 128:266–273

    Article  Google Scholar 

  39. Lu B, Wang H, Ma H, Li J, Zhang Q (2012) Tumor suppressor TSLC1 is implicated in cell proliferation, invasion and apoptosis in laryngeal squamous cell carcinoma by regulating Akt signaling pathway. Tumor Biology 33:2007–2017

    Article  CAS  Google Scholar 

  40. Mcavoy S, Ganapathiraju SC, Ducharmesmith AL, Pritchett JR, Kosari F, Perez DS, Zhu Y, James CD, Smith DI (2007) Non-random inactivation of large common fragile site genes in different cancers. Cytogenet Genome Res 118:260–269

    Article  CAS  Google Scholar 

  41. Yang M, Park JY, Tae K (2011) Genome-wide evidence of XPC alteration in laryngeal squamous cell carcinomas. Asian Pac J Cancer Prev APJCP 12:1477–1481

    PubMed  Google Scholar 

  42. Yuan Y, Nymoen DA, Dong HP et al (2009) Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Hum Pathol 40:1453–1460

    Article  CAS  Google Scholar 

  43. Chen YQ, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res 2:1–19

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Municipal Administration of Hospitals Clinical Medicine Development of special funding support (XMLX20131), Beijing Municipal Administration of Hospitals Incubating Program (PX2018009), The Basic-Clinical Cooperation Fund, Capital Medical University (17JL76), The Golden Bridge Project, Beijing (JQ17031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Lian or Jugao Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving human participants in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all patients included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 The expression level of 13 differently expressed genes (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, R., He, S. et al. The identification of induction chemo-sensitivity genes of laryngeal squamous cell carcinoma and their clinical utilization. Eur Arch Otorhinolaryngol 275, 2773–2781 (2018). https://doi.org/10.1007/s00405-018-5134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-5134-x

Keywords

Navigation