Skip to main content

Advertisement

Log in

Dasatinib prevents skeletal metastasis of osteotropic MDA-MB-231 cells in a xenograft mouse model

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Bone metastasis in breast cancer has been linked to activity of c-Src kinase, one of the extensively explored tyrosine kinases in cell biology. The impact of TNF-related apoptosis inducing ligand (TRAIL) and TRAIL receptors has just recently been integrated into this conception.

Methods

An osteotropic clone of MDA-MB-231 cells simulated a model for bone metastasis of triple-negative breast cancer (TNBC). The effects of Dasatinib, a clinically established inhibitor of Src kinases family and Abl were evaluated in vitro and in vivo. In vivo effects of Dasatinib treatment on the occurrence of skeletal metastases were tested in a xenograft mouse model after intra-cardiac injection of osteotropic MDA-MB-231-cells. Ex vivo analyses of the bone sections confirmed intraosseous growth of metastases and allowed determination of osteoclastic activity.

Results

Treatment of osteotropic MDA-MB-231 cells with Dasatinib inhibited proliferation rates in vitro. A shift in TRAIL-receptor expression towards an induction of oncogenic TRAIL-R2 was observed. In vivo, 15 of 30 mice received an intra-peritoneal treatment with Dasatinib. These mice showed significantly less skeletal metastases in bioluminescence scans. Moreover, a pronounced increase in bone volume was observed in the treatment group, as detected by µ-Computed Tomography. Dasatinib treatment also led to a greater increase in bone density in tibiae without metastatic affection, which was accompanied by reduced recruitment of osteoclasts.

Conclusion

Our observations support the concept of utilizing Dasatinib in targeting early-stage bone metastatic TNBC and sustaining bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176

    Article  CAS  PubMed  Google Scholar 

  2. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  CAS  PubMed  Google Scholar 

  3. Pantel K, Müller V, Auer M, Nusser N, Harbeck N, Braun S (2003) Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res 9(17):6326–6334

    CAS  PubMed  Google Scholar 

  4. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga JY, Marth C, Oruzio D, Wiedswang G, Solomayer EF, Kundt G, Strobl B, Fehm T, Wong GY, Bliss J, Vincent-Salomon A, Pantel K (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  CAS  PubMed  Google Scholar 

  5. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  7. Reissig D, Clement J, Sanger J, Berndt A, Kosmehl H, Bohmer FD (2001) Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched non-tumor tissue. J Cancer Res Clin Oncol 127:226–230

    Article  CAS  PubMed  Google Scholar 

  8. Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, Hennipman A, Michels AA, Staal GE (1992) Characterization of protein kinases from human breast cancer: Involvement of the c-src oncogene product. Cancer Res 52:4773–4778

    CAS  PubMed  Google Scholar 

  9. Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287(2–3):121–149 (Review)

    PubMed  Google Scholar 

  10. Miyazaki T, Tanaka S, Sanjay A, Baron R (2006) The role of c-Src kinase in the regulation of osteoclast function. Mod Rheumatol 16:68–74

    Article  CAS  PubMed  Google Scholar 

  11. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P (1993) Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA 90:4485–4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herold CI, Chadaram V, Peterson BL, Marcom PK, Hopkins J, Kimmick GG, Favaro J, Hamilton E, Welch RA, Bacus S, Blackwell KL (2011) Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin Cancer Res 17(18):6061–6070

    Article  CAS  PubMed  Google Scholar 

  13. Mayer EL, Baurain JF, Sparano J, Strauss L, Campone M, Fumoleau P, Rugo H, Awada A, Sy O, Llombart-Cussac A (2011) A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin Cancer Res 17(21):6897–6904

    Article  CAS  PubMed  Google Scholar 

  14. Finn RS, Bengala C, Ibrahim N, Roché H, Sparano J, Strauss LC, Fairchild J, Sy O, Goldstein LJ (2011) Dasatinib as a single agent in triple-negative breast cancer: results of an open-label phase 2 study. Clin Cancer Res 17(21):6905–6913

    Article  CAS  PubMed  Google Scholar 

  15. Schott AF, Barlow WE, Van Poznak CH, Hayes DF, Moinpour CM, Lew DL, Dy PA, Keller ET, Keller JM, Hortobagyi GN (2016) Phase II studies of two different schedules of dasatinib in bone metastasis predominant metastatic breast cancer: SWOG S0622. Breast Cancer Res Treat 159(1):87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pusztai L, Moulder S, Altan M, Kwiatkowski D, Valero V, Ueno NT, Esteva FJ, Avritscher R, Qi Y, Strauss L, Hortobagyi GN, Hatzis C, Symmans WF (2014) Gene signature-guided dasatinib therapy in metastatic breast cancer. Clin Cancer Res 20(20):5265–5271

    Article  CAS  PubMed  Google Scholar 

  17. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pichot CS, Hartig SM, Xia L, Arvanitis C, Monisvais D, Lee FY, Frost JA, Corey SJ (2009) Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. Br J Cancer 101(1):38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massagué J (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA, Massagué J (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5):1060–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Azijli K, Weyhenmeyer B, Peters GJ, de Jong S, Kruyt FA (2013) Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 20(7):858–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trauzold A, Wermann H, Arlt A, Schütze S, Schäfer H, Oestern S, Röder C, Ungefroren H, Lampe E, Heinrich M, Walczak H, Kalthoff H (2001) CD95 and TRAIL receptor-mediated activation of protein kinase C and NF-kappaB contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells. Oncogene 20(31):4258–4269

    Article  CAS  PubMed  Google Scholar 

  23. Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D, Emme D, Röder C, Kalthoff H, Wajant H (2006) TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25(56):7434–7439

    Article  CAS  PubMed  Google Scholar 

  24. Siegmund D, Klose S, Zhou D, Baumann B, Röder C, Kalthoff H, Wajant H, Trauzold A (2007) Role of caspases in CD95L- and TRAIL-induced non-apoptotic signalling in pancreatic tumour cells. Cell Signal 19(6):1172–1184

    Article  CAS  PubMed  Google Scholar 

  25. Bertsch U, Röder C, Kalthoff H, Trauzold A (2014) Compartmentalization of TNF-related apoptosis-inducing ligand (TRAIL) death receptor functions: emerging role of nuclear TRAIL-R2. Cell Death Dis 28(5):e1390

    Article  CAS  Google Scholar 

  26. Haselmann V, Kurz A, Bertsch U, Hübner S, Olempska-Müller M, Fritsch J, Häsler R, Pickl A, Fritsche H, Annewanter F, Engler C, Fleig B, Bernt A, Röder C, Schmidt H, Gelhaus C, Hauser C, Egberts JH, Heneweer C, Rohde AM, Böger C, Knippschild U, Röcken C, Adam D, Walczak H, Schütze S, Janssen O, Wulczyn FG, Wajant H, Kalthoff H, Trauzold A (2014) Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 146:278–290

    Article  CAS  PubMed  Google Scholar 

  27. von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L, Grosse-Wilde A, Coy JF, El-Bahrawy MA, Bergmann F, Koschny R, Werner J, Ganten TM, Schweiger T, Hoetzenecker K, Kenessey I, Hegedüs B, Bergmann M, Hauser C, Egberts JH, Becker T, Röcken C, Kalthoff H, Trauzold A, Anderson KI, Sansom OJ, Walczak H (2015) Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27(4):561–573

    Article  CAS  Google Scholar 

  28. McCarthy MM, Sznol M, DiVito KA, Camp RL, Rimm DL, Kluger HM (2005) Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer. Clin Cancer Res 11:5188–5194

    Article  CAS  PubMed  Google Scholar 

  29. Ganten TM, Sykora J, Koschny R, Batke E, Aulmann S, Mansmann U, Stremmel W, Sinn HP, Walczak H (2009) Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer. J Mol Med (Berl) 87:995–1007

    Article  CAS  Google Scholar 

  30. Heilmann T, Vondung F, Borzikowsky C, Szymczak S, Krüger S, Alkatout I, Wenners A, Bauer M, Klapper W, Röcken C, Maass N, von Karstedt S, Schem C, Trauzold A (2019) Heterogeneous intracellular TRAIL-receptor distribution predicts poor outcome in breast cancer patients. J Mol Med (Berl) 97(8):1155–1167

    Article  Google Scholar 

  31. Fritsche H, Heilmann T, Tower RJ, Hauser C, von Au A, El-Sheikh D, Campbell GM, Alp G, Schewe D, Hübner S, Tiwari S, Kownatzki D, Boretius S, Adam D, Jonat W, Becker T, Glüer CC, Zöller M, Kalthoff H, Schem C, Trauzold A (2015) TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model. Oncotarget 6:9502–9516

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schem C, Tower RJ, Kneissl P, Rambow AC, Campbell GM, Desel C, Damm T, Heilmann T, Fuchs S, Zuhayra M, Trauzold A, Glüer CC, Schott S, Tiwari S (2017) Pharmacologically inactive bisphosphonates as an alternative strategy for targeting osteoclasts: in vivo assessment of 5-fluorodeoxyuridine-alendronate in a preclinical model of breast cancer bone metastases. J Bone Miner Res 32(3):536–548

    Article  CAS  PubMed  Google Scholar 

  33. Myoui A, Nishimura R, Williams PJ, Hiraga T, Tamura D, Michigami T, Mundy GR, Yoneda T (2003) C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res 63:5028–5033

    CAS  PubMed  Google Scholar 

  34. Rucci N, Recchia I, Angelucci A, Alamanou M, Del FA, Fortunati D, Susa M, Fabbro D, Bologna M, Teti A (2006) Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Exp Ther 318:161–172

    Article  CAS  PubMed  Google Scholar 

  35. Maroni P, Bendinelli P, Matteucci E, Locatelli A, Nakamura T, Scita G, Desiderio MA (2014) Osteolytic bone metastasis is hampered by impinging on the interplay among autophagy, anoikis and ossification. Cell Death Dis 5:e1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Löwik CW, Gautschi E, Thalmann GN, Cecchini MG (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160(3):1143–1153

    Article  PubMed  PubMed Central  Google Scholar 

  37. Willms A, Schittek H, Rahn S, Sosna J, Mert U, Adam D, Trauzold A (2019) Impact of p53 status on TRAIL-mediated apoptotic and non-apoptotic signaling in cancer cells. PLoS ONE 14(4):e0214847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock RB, Tajbakhsh M, Reynolds CP, Maris JM, Keir ST, Billups CA, Smith MA (2008) Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 50(6):1198–1206

    Article  PubMed  Google Scholar 

  39. Hingorani P, Zhang W, Gorlick R, Kolb EA (2009) Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo. Clin Cancer Res 15(10):3416–3422

    Article  CAS  PubMed  Google Scholar 

  40. Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4):505–515

    Article  PubMed  Google Scholar 

  41. Campbell GM, Tiwari S, Grundmann F, Purcz N, Schem C, Glüer CC (2014) Three-dimensional image registration improves the long-term precision of in vivo micro-computed tomographic measurements in anabolic and catabolic mouse models. Calcif Tissue Int 94(3):282–292

    Article  CAS  PubMed  Google Scholar 

  42. van de Wijngaert FP, Burger EH (1986) Demonstration of tartrate-resistant acid phosphatase in un-decalcified, glycolmethacrylate-embedded mouse bone: a possible marker for (pre)osteoclast identification. J Histochem Cytochem 34(10):1317–1323

    Article  PubMed  Google Scholar 

  43. IBM (2013) IBM SPSS Statistics (version 22.0.0.2 for Windows) [Computer software]. IBM, Armonk

    Google Scholar 

  44. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664

    Article  CAS  PubMed  Google Scholar 

  45. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, Guise TA, Massagué J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  46. Aleshin A, Finn RS (2010) SRC: a century of science brought to the clinic. Neoplasia 2(8):599–607 (Review)

    Article  CAS  Google Scholar 

  47. Chen L, Mayer JA, Krisko TI, Speers CW, Wang T, Hilsenbeck SG, Brown PH (2009) Inhibition of the p38 kinase suppresses the proliferation of human ER-negative breast cancer cells. Cancer Res 69(23):8853–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gilani RA, Phadke S, Bao LW, Lachacz EJ, Dziubinski ML, Brandvold KR, Steffey ME, Kwarcinski FE, Graveel CR, Kidwell KM, Merajver SD, Soellner MB (2016) UM-164: a potent c-Src/p38 kinase Inhibitor with in vivo activity against triple-negative breast cancer. Clin Cancer Res 22(20):5087–5096

    Article  CAS  PubMed  Google Scholar 

  49. Garimella SV, Gehlhaus K, Dine JL, Pitt JJ, Grandin M, Chakka S, Nau MM, Caplen NJ, Lipkowitz S (2014) Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening. Breast Cancer Res 16(2):R41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang X, Xue Q, Wu L, Wang B, Liang H (2018) Dasatinib promotes TRAIL-mediated apoptosis by upregulating CHOP-dependent death receptor 5 in gastric cancer. FEBS Open Bio 8(5):732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Azijli K, Yuvaraj S, Peppelenbosch MP, Würdinger T, Dekker H, Joore J, van Dijk E, Quax WJ, Peters GJ, de Jong S, Kruyt FA (2012) Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3-dependent invasion in resistant non-small cell lung cancer cells. J Cell Sci 125(Pt 19):4651–4661

    Article  CAS  PubMed  Google Scholar 

  52. Kamath AV, Wang J, Lee FY, Marathe PH (2008) Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol 61(3):365–376

    Article  CAS  PubMed  Google Scholar 

  53. Garcia-Gomez A, Ocio EM, Crusoe E, Santamaria C, Hernández-Campo P, Blanco JF, Sanchez-Guijo FM, Hernández-Iglesias T, Briñón JG, Fisac-Herrero RM, Lee FY, Pandiella A, San Miguel JF, Garayoa M (2012) Dasatinib as a bone-modifying agent: anabolic and anti-resorptive effects. PLoS ONE 7(4):e34914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gabriele Trompke for her technical assistance.

Funding

Christian Schem received project-related “start up funding for young investigators” from the Medical faculty of Kiel University in 2015, No F355918.

Author information

Authors and Affiliations

Authors

Contributions

TH: project development, data collection or management, data analysis, manuscript writing; ALR: data collection or management, data analysis, manuscript editing; MR: data collection or management, data analysis; MT: data collection or management, data analysis; OW: data collection or management, data analysis; TD: data collection or management, data analysis; CB: data analysis; NM: project development, manuscript editing; CCG: manuscript editing; ST: data collection or management, data analysis, manuscript editing; AT: project development, data collection or management, data analysis, manuscript editing; CS: project development, data collection or management, data analysis, manuscript editing.

Corresponding author

Correspondence to Thorsten Heilmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Ethics Committee for Animal Experiments at Christian‐Albrechts‐Universität‐zu‐Kiel, V 242—64202/2015 (73-6/15)).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 376 kb)

Supplementary file2 (PDF 25216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heilmann, T., Rumpf, AL., Roscher, M. et al. Dasatinib prevents skeletal metastasis of osteotropic MDA-MB-231 cells in a xenograft mouse model. Arch Gynecol Obstet 301, 1493–1502 (2020). https://doi.org/10.1007/s00404-020-05496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-020-05496-4

Keywords

Navigation