Skip to main content

Advertisement

Log in

Downregulation of miR-503 contributes to the development of drug resistance in ovarian cancer by targeting PI3K p85

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

Cisplatin is an important chemotherapeutic agent frequently used in the treatment of ovarian cancer. However, resistance to cisplatin is an obstacle to the treatment of ovarian cancer. Recently, many studies have demonstrated that microRNAs (miRNAs) are involved in the drug resistance of ovarian cancer cells. In this study, we explored the role of miR-503 in cisplatin-resistant ovarian cancer.

Materials and Methods

To investigate the relationship between miR-503 expression and the sensitivity of ovarian cancer cells to cisplatin, the cells were transfected with miR-503 mimics/inhibitors. The relative expression of miR-503 RNA and its targeted gene PI3K mRNA were detected by real-time PCR (RT-PCR). Western blot was used to measure relevant protein levels. Flow cytometry and CCK-8 assay were used to analyze cell proliferation and apoptosis.

Results

MiR-503 expression was significantly downregulated in cisplatin-resistant ovarian cancer cell line SKOV3/DDP compared with parental SKOV3. Over-expression and knock-down of miR-503 partially regulated apoptotic activity and changed the cisplatin resistance of ovarian cancer cells. In exploring the underlying mechanisms of miR-503 in ovarian cancer cells’ resistance to cisplatin, we found that miR-503 can directly target PI3K p85 and participates in the regulation of the PI3K/Akt signaling pathway. In vivo, miR-503 agomirs combined with cisplatin treatment significantly reduced the growth of tumors compared with cisplatin alone.

Conclusions

Our data suggest that miR-503 might be a sensitizer to cisplatin treatment in ovarian cancer by targeting PI3K p85, thus giving a new insight into developing therapeutic strategies to overcome cisplatin resistance in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Langhe R (2015) MicroRNA and ovarian cancer. Adv Exp Med Biol 889:119–151

    Article  CAS  PubMed  Google Scholar 

  2. Clarke-Pearson DL (2009) Screening for ovarian cancer. N Engl J Med 361(2):170–177

    Article  CAS  PubMed  Google Scholar 

  3. Greenbee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics. CA Cancer J Clin 51(1):15–36

    Article  Google Scholar 

  4. Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177(3):1053–1064

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279

    Article  CAS  PubMed  Google Scholar 

  6. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  Google Scholar 

  7. Yap TA, Carden CP, Kaye SB (2009) Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 9(3):167–181

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong DK (2002) Relapsed ovarian cancer: challenges and management strategies for a chronic disease. Oncologist 7(Suppl 5):20–28

    Article  CAS  PubMed  Google Scholar 

  9. Borley J, Brown R (2015) Epigenetic mechanisms and therapeutic targets of chemotherapy resistance in epithelial ovarian cancer. Ann Med 47(5):359–369

    Article  PubMed  Google Scholar 

  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  11. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagaraj AB, Joseph P, DiFeo A (2015) miRNAs as prognostic and therapeutic tools in epithelial ovarian cancer. Biomark Med 9(3):241–257

    Article  CAS  PubMed  Google Scholar 

  13. Iorio MV, Croce CM (2012) MicroRNA involvement in human cancer. Carcinogenesis 33(6):1126–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costa PM, Pedroso de Lima MC (2013) MicroRNAs as molecular targets for cancer therapy: on the modulation of microRNA expression. Pharmaceuticals (Basel) 6(10):1195–1220

    Article  Google Scholar 

  15. Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP (2011) MicroRNA-mediated drug resistance in breast cancer. Clin Epigenet 2(2):171–185

    Article  CAS  Google Scholar 

  16. Riquelme I, Letelier P, Riffo-Campos AL, Brebi P, Roa JC (2016) Emerging role of miRNAs in the drug resistance of gastric cancer. Int J Mol Sci 17(3):424

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rolfo C, Fanale D, Hong DS et al (2014) Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr Pharm Biotechnol 15(5):475–485

    Article  CAS  PubMed  Google Scholar 

  18. Samuel P, Pink RC, Brooks SA, Carter DR (2016) miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. Expert Rev Anticancer Ther 16(1):57–70

    Article  CAS  PubMed  Google Scholar 

  19. Huh JH, Kim TH, Kim K, Song JA, Jung YJ, Jeong JY, Lee MJ, Kim YK, Lee DH, An HJ (2013) Dysregulation of miR-106a and miR-591 confers paclitaxel resistance to ovarian cancer. Br J Cancer 109(2):452–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noguchi T, Toiyama Y, Kitajima T et al (2016) MiRNA-503 promotes tumor progression and is associated with early recurrence and poor prognosis in human colorectal cancer. Oncology 90(4):221–231

    Article  CAS  PubMed  Google Scholar 

  21. Guo X, Zhang J, Pang J, He S, Li G, Chong Y, Li C, Jiao Z, Zhang S, Shao M (2016) MicroRNA-503 represses epithelial–mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb. Tumour Biol 37(7):9181–9187

    Article  CAS  PubMed  Google Scholar 

  22. Yang X, Zang J, Pan X, Yin J, Xiang Q, Yu J, Gan R, Lei X (2017) MiR-503 inhibits proliferation making human hepatocellular carcinoma cells susceptible to 5 fluorouracil by targeting EIF4E. Oncol Rep 37(1):563–570

    Article  PubMed  Google Scholar 

  23. Qiu T, Zhou L, Wang T et al (2013) MiR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin by targeting Bcl-2. Int J Mol Med 32(3):593–598

    Article  CAS  PubMed  Google Scholar 

  24. Di Martino MT, Leone E, Amodio N et al (2012) Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res 18(22):6260–6270

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu PN, Yan MD, Lai HC, Huang RL, Chou YC, Lin WC, Yeh LT, Lin YW (2014) Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer 134(3):542–551

    Article  CAS  PubMed  Google Scholar 

  26. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  27. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–1883

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13(3):57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samuel P, Pink RC, Caley DP, Currie JM, Brooks SA, Carter DR (2016) Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells. Tumour Biol 37(2):2565–2573

    Article  CAS  PubMed  Google Scholar 

  30. Fu X, Tian J, Zhang L, Chen Y, Hao Q (2012) Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett 586(9):1279–1286

    Article  CAS  PubMed  Google Scholar 

  31. Dobbin ZC, Landen CN (2013) The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci 14(4):8213–8227

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ersahin T, Tuncbag N, Cetin-Atalay R (2015) The PI3K/AKT/mTOR interactive pathway. Mol BioSyst 11(7):1946–1954

    Article  CAS  PubMed  Google Scholar 

  33. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94(1):15–21

    Article  CAS  PubMed  Google Scholar 

  34. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB (2002) PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277(7):5484–5489

    Article  CAS  PubMed  Google Scholar 

  35. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21(8):1299–1303

    Article  CAS  PubMed  Google Scholar 

  36. Hayakawa J, Ohmichi M, Kurachi H, Kanda Y, Hisamoto K, Nishio Y, Adachi K, Tasaka K, Kanzaki T, Murata Y (2000) Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 60(21):5988–5994

    CAS  PubMed  Google Scholar 

  37. Yang Y, Liu L, Zhang Y, Guan H, Wu J, Zhu X, Yuan J, Li M (2014) MiR-503 targets PI3K p85 and IKK-β and suppresses progression of non-small cell lung cancer. Int J Cancer 135(7):1531–1542. https://www.ncbi.nlm.nih.gov/pubmed/?term=LiM%5BAuthor%5D&cauthor=true&cauthor_uid=24550137

Download references

Funding

This study was funded by Beijing Natural Science Foundation (no. 7162063).

Author information

Authors and Affiliations

Authors

Contributions

DW: Data analysis, Data collection, Manuscript writing. PL: Data collection. XM: Data collection. JM: Project development.

Corresponding author

Correspondence to Jinwei Miao.

Ethics declarations

Conflict of interest

Di Wu declares that she has no conflict of interest. Pan Lu declares that she has no conflict of interest. Xue Mi declares that she has no conflict of interest. Jinwei Miao declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Lu, P., Mi, X. et al. Downregulation of miR-503 contributes to the development of drug resistance in ovarian cancer by targeting PI3K p85. Arch Gynecol Obstet 297, 699–707 (2018). https://doi.org/10.1007/s00404-018-4649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-018-4649-0

Keywords

Navigation