Skip to main content
Log in

Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Ovarian cancers have a high mortality rate; this is in part due to resistance to the platinum-based compounds used in chemotherapy. In this paper, we assess the role of microRNA-31 in the development of chemoresistance to cisplatin. We used previous data from microarray experiments to identify potential microRNAs (miRNAs) involved in chemoresistance. The functional significance of these microRNAs was tested using miRNA mimics. We used RNA-seq to identify pathways and genes de-regulated in the resistant cell line and then determined their role using RNAi. Analysis of publically available datasets reveals the potential clinical significance. Our data show that miR-31 is increased, whilst potassium channel calcium activated large conductance subfamily M alpha, member 1 (KCNMA1), a subunit of calcium-regulated big potassium (BK) channels, is reduced in resistant ovarian cells. Over-expression of miR-31 increased resistance, as did knockdown of KCNMA1 or inhibition of BK channels. This suggests that these genes directly modulate cisplatin response. Our data also suggest that miR-31 represses KCNMA1 expression. Comparing the levels of miR-31 and KCNMA1 to cisplatin resistance in the NCI60 panel or chemoresistance in cohorts of ovarian cancer tumours reveals correlations that support a role for these genes in vitro and in vivo. Here we show that miR-31 and KCNMA1 are involved in mediating cisplatin resistance in ovarian cancer. Our data gives a new insight into the potential mechanisms to therapeutically target in cisplatin resistance common to ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Aletti G, Gallenberg M, Cliby W, Jatoi A, Hartmann L. Current management strategies for ovarian cancer. Mayo Clin Proc. 2007;82:751–70.

    Article  PubMed  Google Scholar 

  3. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351:2519–29.

    Article  CAS  PubMed  Google Scholar 

  4. Goff BA, Mandel L, Muntz HG, Melancon CH. Ovarian carcinoma diagnosis. Cancer. 2000;89:2068–75.

    Article  CAS  PubMed  Google Scholar 

  5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  6. Berkenblit A, Cannistra S. Advances in the management of epithelial ovarian cancer. J Reprod Med. 2005;50:426–38.

    PubMed  Google Scholar 

  7. Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34:155–66.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol. 2001;67:93–130.

    Article  CAS  PubMed  Google Scholar 

  9. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83.

    Article  CAS  PubMed  Google Scholar 

  10. Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science. 2013;340:82–5.

    Article  CAS  PubMed  Google Scholar 

  11. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 2015;137:143–51.

    Article  CAS  PubMed  Google Scholar 

  13. Pors K, Plumb JA, Brown R, Teesdale-Spittle P, Searcey M, Smith PJ, et al. Development of nonsymmetrical 1,4-disubstituted anthraquinones that are potently active against cisplatin-resistant ovarian cancer cells. J Med Chem. 2005;48:6690–5.

    Article  CAS  PubMed  Google Scholar 

  14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  15. Patnaik SK, Dahlgaard J, Mazin W, Kannisto E, Jensen T, Knudsen S, et al. Expression of microRNAs in the NCI-60 cancer cell-lines. PLoS One. 2012;7, e49918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000;24:227–35.

    Article  CAS  PubMed  Google Scholar 

  17. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    Article  Google Scholar 

  18. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  19. Liang F, Schulte BA, Qu C, Hu W, Shen Z. Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience. 2005;135:263–71.

    Article  CAS  PubMed  Google Scholar 

  20. Ziliak D, Gamazon ER, Lacroix B, Kyung Im H, Wen Y, Huang RS. Genetic variation that predicts platinum sensitivity reveals the role of miR-193b* in chemotherapeutic susceptibility. Mol Cancer Ther. 2012;11:2054–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47.

    Article  CAS  PubMed  Google Scholar 

  22. Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al. Cellminer: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72:3499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peters D, Freund J, Ochs RL. Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells. Mol Cancer Ther. 2005;4:1605–16.

    Article  CAS  PubMed  Google Scholar 

  24. Network CGAR. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  Google Scholar 

  25. Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010;120:1298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang T, Wang Q, Zhao D, Cui Y, Cao B, Guo L, et al. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond). 2011;121:437–47.

    Article  CAS  Google Scholar 

  27. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.

    Article  CAS  PubMed  Google Scholar 

  28. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κb pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21:121–35.

    Article  CAS  PubMed  Google Scholar 

  29. Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010;1, e105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase c {epsilon} (pkc{epsilon}). J Biol Chem. 2013;288:8750–61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer. 2010;10:616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7:921–31.

    Article  CAS  PubMed  Google Scholar 

  33. Sokolowski B, Orchard S, Harvey M, Sridhar S, Sakai Y. Conserved BK channel-protein interactions reveal signals relevant to cell death and survival. PLoS One. 2011;6, e28532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, et al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene. 2007;26:2525–34.

    Article  CAS  PubMed  Google Scholar 

  35. Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G, Obermann E, et al. Role of KCNMA1 in breast cancer. PLoS One. 2012;7, e41664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cambien B, Rezzonico R, Vitale S, Rouzaire-Dubois B, Dubois JM, Barthel R, et al. Silencing of HSLO potassium channels in human osteosarcoma cells promotes tumorigenesis. Int J Cancer. 2008;123:365–71.

    Article  CAS  PubMed  Google Scholar 

  37. Partheen K, Levan K, Osterberg L, Horvath G. Expression analysis of stage III serous ovarian adenocarcinoma distinguishes a sub-group of survivors. Eur J Cancer. 2006;42:2846–54.

    Article  CAS  PubMed  Google Scholar 

  38. Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ, Wilhelm-Benartzi CS, et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene. 2012;31:4567–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tayyaba Sultana and Kate Wicks for technical assistance and members of the lab for critical reading of the manuscript and valuable discussions. We are grateful to Professor Robert Brown for his advice and technical assistance. DRFC RCP and DPC were kindly funded by Cancer and Polio Research Fund. PS, JMSC, SAB and DRFC were funded by Oxford Brookes University.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Raul Francisco Carter.

Additional information

Priya Samuel and Ryan Charles Pink contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuel, P., Pink, R.C., Caley, D.P. et al. Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells. Tumor Biol. 37, 2565–2573 (2016). https://doi.org/10.1007/s13277-015-4081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4081-z

Keywords

Navigation