Skip to main content

Advertisement

Log in

Photodynamic therapy with light emitting fabrics: a review

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy is a powerful tool in the localized and selective treatment of dermatologic diseases, such as actinic keratosis, acne vulgaris, Bowen’s disease and basal cell carcinoma. The success of photodynamic therapy is mainly attributed to the development of flexible light sources for homogenous and reproducible illumination during clinical studies. The essential requirement for this therapy includes, a suitable photosensitizer, presence of oxygen and a light of specific wavelength and intensity. The use of light emitting fabric comprising of optical fibers provides an exciting and an efficient way to transfer light directly to the skin uniformly on the infected body parts. As the optical fibers can transmit light from 400 to 1200 nm it is possible to combine light emitting fabric with laser sources for medical applications. This review focusses on the challenges and recent developments in the use of light emitting fabric for photodynamic therapy in clinical studies and its future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with modification from Ref. [1], Elsevier Science

Fig. 3

Reproduced with modification from Ref. [1], Elsevier Science

Fig. 4

Reproduced with permission from Ref 1, Elsevier Science

Fig. 5

Reproduced with permission from Ref. [1], Elsevier Science

Fig. 6

Reproduced with permission from Ref. [1], Elsevier Science

Fig. 7

Reproduced from Reproduced from Ref. [17], Open access article, WILEY–VCH Verlag GmbH & Co. KGaA, Weinhein

Fig. 8

Reproduced from Ref. [17], Open access article, WILEY–VCH Verlag GmbH & Co. KGaA, Weinhein

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Tylcz JB, Vicentini C, Mordon S (2016) Light emitting textiles for a photodynamic therapy. In: Koncar V (ed) Smart textiles and their applications. Woodhead Publishing, Cambridge, pp 71–87

    Chapter  Google Scholar 

  2. Moretti C, Tao X, Koehl L, Koncar V (2016) Electrochromic textile displays for personal communication. In: Koncar V (ed) Smart textiles and their applications. Woodhead Publishing, Cambridge, pp 539–568

    Chapter  Google Scholar 

  3. McCarron PA, Donnelly RF, Zawislak A, Woolfson AD (2006) Design and evaluation of a water-soluble bioadhesive patch formulation for cutaneous delivery of 5-aminolevulinic acid to superficial neoplastic lesions. Eur J Pharm Sci 27:268–279. https://doi.org/10.1016/j.ejps.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Cochrane C, Mordon S, Lesage JC, Koncar V (2013) New design of textile light diffusers for photodynamic therapy. Mater Sci Eng C 33:1170–1175. https://doi.org/10.1016/j.msec.2012.12.007

    Article  CAS  Google Scholar 

  5. Mordon S, Cochrane C, Tylcz JB, Betrouni N, Mortier L, Koncar V (2015) Light emitting fabric technologies for photodynamic therapy. Photodiagn Photodyn Ther 12:1–8. https://doi.org/10.1016/j.pdpdt.2014.11.002

    Article  CAS  Google Scholar 

  6. Kremenakova D, Militky J, Meryova B, Ledl V (2012) Characterization of side emitting polymeric optical fibres. J Fiber Bioeng Inform 5:423–431. https://doi.org/10.3993/jfbi12201207

    Article  Google Scholar 

  7. Spigulis J, Pfafrods D (1997) Clinical potential of the side-glowing optical fibers. In: Proceeding of SPIE vol. 2977, Specialty fiber optics for biomedical and industrial applications, San Jose, CA, USA, pp 84–88. https://doi.org/10.1117/12.271010.

  8. Spigulis J, Pfafrods D, Stafeckis M, Jelinska-Platace W (1997) Glowing optical fiber designs and parameters. In: Krumins A, Millers DK, Sternberg AR, Spigulis J (eds) Optical inorganic dielectric materials and devices, vol. 2967. Riga, Latvia: SPIE; pp 231–236. Doi: https://doi.org/10.1117/12.266542.

  9. Xu J, Ao Y, Fu D, Lin J, Lin Y, Shen X (2008) Photocatalytic activity on TiO2-coated-sideglowing optical fiber reactor under solar light. J Photochem Photobiol 199:165–169. https://doi.org/10.1016/j.jphotochem.2008.05.019

    Article  CAS  Google Scholar 

  10. Koncar V (2005) Optical fiber fabric displays. In: Optics and photonics news, Optical Society of America, 16: pp 40–44. http://www.opticsinfobase.org/abstract.cfm?id=83263.

  11. Endruweit A, Long A, Johnson M (2008) Textile composites with integrated optical fibres: quantification of the influence of single and multiple fibre bends on the light transmission using a Monte Carlo ray-tracing method. Smart Mater Struct 17:1–10. https://doi.org/10.1088/0964-1726/17/01/015004

    Article  CAS  Google Scholar 

  12. Hu Y, Wang K, Zhu TC (2010) Pre-clinic study of uniformity of light blanket for intraoperative photodynamic therapy. In: Kessel DH (ed) Optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy XIX, vol. 7551. Doi: https://doi.org/10.1117/12.842809.

  13. Hu Y, Wang K, Zhu TC (2013) A light blanket for intraoperative photodynamic therapy. Proc SPIE Int Soc Opt Eng 7380:73801W. https://doi.org/10.1117/12.823064

    Article  PubMed  PubMed Central  Google Scholar 

  14. Selm B, Rothmaier M, Camenzind M, Khan T, Walt H (2007) Novel flexible light diffuser and irradiation properties for photodynamic therapy. J Biomed Opt 12:034024. https://doi.org/10.1117/1.2749737

    Article  PubMed  Google Scholar 

  15. Goerner D (1986) Woven structure and design single cloth construction. Wira Technology Group, Leeds

    Google Scholar 

  16. Oguz Y, Koncar V, Cochrane C, Mordon S (2017) Light-emitting woven fabric for treatment with photodynamic therapy and monitoring of actinic keratosis. Photomed Adv Clin Pract Open Sci. https://doi.org/10.5772/64997

    Article  Google Scholar 

  17. Mordon S, Thecua E, Ziane L, Lecomte F, Deleporte P, Baert G, Vignion-Dewalle AS (2020) Light emitting fabrics for photodynamic therapy: Technology, experimental and clinical applications. Transl Biophotonics 2:202000005. https://doi.org/10.1002/tbio.202000005

    Article  Google Scholar 

  18. Thecua E, Ziane L, Baert G, Deleporte P, Leroux B, Kumar A, Baydoun M, Morales O, Delhem N, Mordon S (2019) Devices based on light emitting fabrics dedicated to PDTpreclinical studies. “The Feminine” 51st IPA Congress, London, United Kingdom. HAL Id: hal-02518762. https://hal.archives-ouvertes.fr/hal-02518762.

  19. Guo HW, Lin LT, Chen PH, Ho MH, Huang WT, Lee YJ, Chiou SH, Hsieh YS, Dong CY, Wang HW (2015) Low-fluence rate, long duration photodynamic therapy in glioma mouse model using organic light emitting diode (OLED). Photodiagn Photodyn Ther 12:504–510. https://doi.org/10.1016/j.pdpdt.2015.04.007

    Article  CAS  Google Scholar 

  20. Shukla SK, Kushwaha CS, Guner T, Demir MM (2019) Chemically modified optical fibers in advanced technology: an overview. Opt Laser Tech 115:404–432. https://doi.org/10.1016/j.optlastec.2019.02.025

    Article  CAS  Google Scholar 

  21. Wang Q, Yuan D, Liu W, Chen J, Lin X, Cheng S, Li F, Duan X (2016) Use of optical fiber imported intra-tissue photodynamic therapy for treatment of moderate to severe acne vulgaris. Med Sci Monit 22:362–366. https://doi.org/10.12659/MSM.896586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hongcharu W, Taylor CR, Chang Y (2000) Topical ALA-photodynamic therapy for the treatment of acne vulgaris. J Invest Dermatol 115:183–192. https://doi.org/10.1046/j.1523-1747.2000.00046.x

    Article  CAS  PubMed  Google Scholar 

  23. Vignion-Dewalle AS, Abi Rached H, Thecua E, Lecomte F, Deleporte P, Behal H, Hommel T, Duhamel A, Szeimies RM, Mortier L, Mordon S (2019) A new light-emitting, fabric-based device for photodynamic therapy of actinic keratosis: protocol for a randomized, controlled, multicenter, intra-individual, phase II noninferiority study (the Phosistos Study). JMIR Res Protoc 8:e12990. https://doi.org/10.2196/12990

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vicentini C, Vignion-Dewalle AS, Thecua E, Lecomte F, Maire C, Deleporte P, Behal H, Kerob D, Duhamel A, Mordon S, Mortier L (2019) Photodynamic therapy for actinic keratosis of the forehead and scalp: a randomized, controlled, phase II clinical study evaluating the noninferiority of a new protocol involving irradiation with a light-emitting, fabric-based device (the Flexitheralight protocol) compared with the conventional protocol involving irradiation with the Aktilite CL 128 lamp. Br J Dermatol 180:765–773. https://doi.org/10.1111/bjd.17350

    Article  CAS  PubMed  Google Scholar 

  25. Mordon S, Vignion-Dewalle AS, Abi-Rached H, Thecua E, Lecomte F, Vicentini C, Deleporte P, Behal H, Kerob D, Hommel T, Duhamel A, Szeimies RM, Mortier L (2020) The conventional protocol vs. a protocol including illumination with a fabric-based biophotonic device (the Phosistos protocol) in photodynamic therapy for actinic keratosis: a randomized, controlled, noninferiority clinical study. Br J Dermatol 182:76–84. https://doi.org/10.1111/bjd.18048

    Article  CAS  PubMed  Google Scholar 

  26. Gao Y, Zhang XC, Wang WS, Yang Y, Wang HL, Lu YG, Fan DL (2015) Efficacy and safety of topical ALA-PDT in the treatment of EMPD. Photodiagnosis Photodyn Ther 12:92–97. https://doi.org/10.1016/j.pdpdt.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Rioli DI, Samimi M, Beneton N, Hainaut E, Martin L, Misery L, Quereux G (2018) Efficacy and tolerance of photodynamic therapy for vulvar Paget’s disease: a multicentric retrospective study. Eur J Dermatol 28:351–355. https://doi.org/10.1684/ejd.2018.3289

    Article  CAS  PubMed  Google Scholar 

  28. Thecua E, Vicentini C, Vignion AS, Lecomte F, Deleporte P, Mortier L, Szeimies RM, Mordon S (2017) Light emitting fabric for photodynamic treatment of actinic keratosis. In: Proceeding of SPIE 10037, photonics in dermatology and plastic surgery, 100370L. https://doi.org/10.1117/12.2252201.

  29. Yang H, Lightner CR, Dong L (2012) Light-emitting coaxial nanofiber. ACS Nano 6:622–628. https://doi.org/10.1021/nn204055t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Chemistry, Gujarat University, Ahmedabad for supporting this work.

Funding

The authors declare that they have no funding for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav S. Shrivastav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All the authors have read the manuscript and agreed for its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 727 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, A., Shrivastav, P.S. Photodynamic therapy with light emitting fabrics: a review. Arch Dermatol Res 314, 929–936 (2022). https://doi.org/10.1007/s00403-021-02301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-021-02301-3

Keywords

Navigation