Skip to main content

Advertisement

Log in

Peroxisome proliferator-activated receptor α (PPARα) contributes to control of melanogenesis in B16 F10 melanoma cells

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Recent studies revealed the cooperation between peroxisome proliferator-activated receptor gamma (PPARγ) and α-MSH signaling, which results in enhanced melanogenesis in melanocytes and melanoma cells. However, the agonists of PPARα, such as fenofibrate, exert depigmenting effect. Therefore, we aimed to check how the PPARα expression level affects the antimelanogenic activity of fenofibrate and whether PPARα modulates melanogenesis independently of its agonist. To answer these questions, we used three B16 F10-derived cell lines, which varied in the PPARα expression level and were developed by stable transfection with plasmids driving shRNA-based PPARα silencing or overexpression of PPARα-emerald GFP fusion protein. Melanin contents were assessed with electron paramagnetic resonance spectroscopy along with color component image analysis—a novel approach to pigment content characteristics in melanoma cells. B16 F10 wt and Ctrl shRNA lines showed intermediate pigmentation, whereas the pigmentation of the B16 F10-derived cell lines was inversely correlated with the PPARα expression level. We observed that cells overexpressing PPARα were almost amelanotic and cells with reduced PPARα protein level were heavily melanized. Furthermore, fenofibrate down-regulated the melanogenic apparatus (MITF, tyrosinase, and tyrosinase-related proteins) in the cells with the regular PPARα expression level resulting in their visibly lower total melanin content in all the cell lines. From these observations, we conclude that fenofibrate works as a strong depigmenting agent, which acts independently of PPARα, but in an additive fashion. Our results also indicate that alterations in PGC-1a acetylation and expression level might contribute to the regulation of melanogenesis by PPARα and fenofibrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMPK:

AMP-dependent protein kinase

ASP:

Agouti signaling protein

DOPA:

Dihydroxyphenylalanine

DHICA:

5,6-Dihydroxyindole-2-carboxylic acid

EPR:

Electron paramagnetic resonance (called also ESR—electron spin resonance)

MITF:

Microphthalmia-associated transcription factor

MSH:

Melanocyte-stimulating hormone

PBS:

Phosphate-buffered saline

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1 alpha

POMC:

Proopiomelanocortin

PPAR:

Peroxisome proliferator-activated receptor

PPRE:

PPAR response element

RAR:

All trans-retinoic acid receptor

ROR:

Retinoic acid-related orphan receptor

RXR:

Retinoid X receptor

Trp1, Trp2:

Tyrosinase-related protein 1, 2

References

  1. Baldea I, Costin GE, Shellman Y, Kechris K, Olteanu ED, Filip A, Cosgarea MR, Norris DA, Birlea SA (2013) Biphasic pro-melanogenic and pro-apoptotic effects of all-trans-retinoic acid (ATRA) on human melanocytes: time-course study. J Dermatol Sci 72:168–176. doi:10.1016/j.jdermsci.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  2. Brozyna AA, VanMiddlesworth L, Slominski AT (2008) Inhibition of melanogenesis as a radiation sensitizer for melanoma therapy. Int J Cancer 123:1448–1456. doi:10.1002/ijc.23664

    Article  CAS  PubMed  Google Scholar 

  3. Brozyna AA, Jozwicki W, Janjetovic Z, Slominski AT (2011) Expression of vitamin D receptor decreases during progression of pigmented skin lesions. Hum Pathol 42:618–631. doi:10.1016/j.humpath.2010.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brozyna AA, Jozwicki W, Carlson JA, Slominski AT (2013) Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Hum Pathol 44:2071–2074. doi:10.1016/j.humpath.2013.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brozyna AA, Jozwicki W, Slominski AT (2014) Decreased VDR expression in cutaneous melanomas as marker of tumor progression: new data and analyses. Anticancer Res 34:2735–2743

    PubMed  PubMed Central  Google Scholar 

  6. Brozyna AA, Jozwicki W, Roszkowski K, Filipiak J, Slominski AT (2016) Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget 7:17844–17853. doi:10.18632/oncotarget.7528

    PubMed  PubMed Central  Google Scholar 

  7. Brozyna AA, Jozwicki W, Skobowiat C, Jetten A, Slominski AT (2016) RORalpha and RORgamma expression inversely correlates with human melanoma progression. Oncotarget. doi:10.18632/oncotarget.11211

    Google Scholar 

  8. Canto C, Auwerx J (2010) AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 67:3407–3423. doi:10.1007/s00018-010-0454-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Celebi EM, Schaefer G (eds) (2013) Color medical image analysis. Lecture notes in computational vision and biomechanics, vol 6. Springer, Dordrecht

    Google Scholar 

  10. Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, Rouzaud F, Berens W, Wincovitch SM, Garfield SH, Leapman RD et al (2006) Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci USA 103:9903–9907. doi:10.1073/pnas.0600213103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. del Marmol V, Ito S, Bouchard B, Libert A, Wakamatsu K, Ghanem G, Solano F (1996) Cysteine deprivation promotes eumelanogenesis in human melanoma cells. J Invest Dermatol 107:698–702

    Article  PubMed  Google Scholar 

  12. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688. doi:10.1210/edrv.20.5.0380

    CAS  PubMed  Google Scholar 

  13. d’Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron JC, Kovacs D, Meredith P, Pezzella A, Picardo M, Sarna T et al (2013) Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res 26:616–633. doi:10.1111/pcmr.12121

    Article  PubMed  Google Scholar 

  14. Drukala J, Urbanska K, Wilk A, Grabacka M, Wybieralska E, Del Valle L, Madeja Z, Reiss K (2010) ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARalpha-mediated inhibition of glioma cell motility in vitro. Mol Cancer 9:159. doi:10.1186/1476-4598-9-159

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eastham LL, Mills CN, Niles RM (2008) PPARalpha/gamma expression and activity in mouse and human melanocytes and melanoma cells. Pharm Res 25:1327–1333. doi:10.1007/s11095-007-9524-9

    Article  CAS  PubMed  Google Scholar 

  16. Eberle J, Garbe C, Wang N, Orfanos CE (1995) Incomplete expression of the tyrosinase gene family (tyrosinase, TRP-1, and TRP-2) in human malignant melanoma cells in vitro. Pigment Cell Res 8:307–313

    Article  CAS  PubMed  Google Scholar 

  17. Eberle J, Wagner M, MacNeil S (1998) Human melanoma cell lines show little relationship between expression of pigmentation genes and pigmentary behaviour in vitro. Pigment Cell Res 11:134–142

    Article  CAS  PubMed  Google Scholar 

  18. Flori E, Mastrofrancesco A, Kovacs D, Ramot Y, Briganti S, Bellei B, Paus R, Picardo M (2011) 2,4,6-Octatrienoic acid is a novel promoter of melanogenesis and antioxidant defence in normal human melanocytes via PPAR-gamma activation. Pigment Cell Melanoma Res 24:618–630. doi:10.1111/j.1755-148X.2011.00887.x

    Article  CAS  PubMed  Google Scholar 

  19. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436:117–122. doi:10.1038/nature03664

    Article  CAS  PubMed  Google Scholar 

  20. Giuliano S, Cheli Y, Ohanna M, Bonet C, Beuret L, Bille K, Loubat A, Hofman V, Hofman P, Ponzio G et al (2010) Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res 70:3813–3822. doi:10.1158/0008-5472.CAN-09-2913

    Article  CAS  PubMed  Google Scholar 

  21. Grabacka M, Placha W, Plonka PM, Pajak S, Urbanska K, Laidler P, Slominski A (2004) Inhibition of melanoma metastases by fenofibrate. Arch Dermatol Res 296:54–58. doi:10.1007/s00403-004-0479-y

    Article  CAS  PubMed  Google Scholar 

  22. Grabacka M, Plonka PM, Urbanska K, Reiss K (2006) Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt. Clin Cancer Res 12:3028–3036. doi:10.1158/1078-0432.CCR-05-2556

    Article  CAS  PubMed  Google Scholar 

  23. Grabacka M, Placha W, Urbanska K, Laidler P, Plonka PM, Reiss K (2008) PPAR gamma regulates MITF and beta-catenin expression and promotes a differentiated phenotype in mouse melanoma S91. Pigment Cell Melanoma Res 21:388–396. doi:10.1111/j.1755-148X.2008.00460.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grabacka M, Wilk A, Antonczyk A, Banks P, Walczyk-Tytko E, Dean M, Pierzchalska M, Reiss K (2016) Fenofibrate induces ketone body production in melanoma and glioblastoma cells. Front Endocrinol (Lausanne) 7:5. doi:10.3389/fendo.2016.00005

    Google Scholar 

  25. Gupta M, Mahajan VK, Mehta KS, Chauhan PS, Rawat R (2015) Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the ‘future’ in dermatology therapeutics? Arch Dermatol Res 307:767–780. doi:10.1007/s00403-015-1571-1

    Article  CAS  PubMed  Google Scholar 

  26. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL et al (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23:302–315. doi:10.1016/j.ccr.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoek KS, Goding CR (2010) Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 23:746–759. doi:10.1111/j.1755-148X.2010.00757.x

    Article  CAS  PubMed  Google Scholar 

  28. Huang YC, Liu KC, Chiou YL, Yang CH, Chen TH, Li TT, Liu LL (2013) Fenofibrate suppresses melanogenesis in B16-F10 melanoma cells via activation of the p38 mitogen-activated protein kinase pathway. Chem Biol Interact 205:157–164. doi:10.1016/j.cbi.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  29. Jablonski NG, Chaplin G (2010) Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci USA 107(Suppl 2):8962–8968. doi:10.1073/pnas.0914628107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022. doi:10.1073/pnas.0705070104

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeninga EH, Schoonjans K, Auwerx J (2010) Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29:4617–4624. doi:10.1038/onc.2010.206

    Article  CAS  PubMed  Google Scholar 

  32. Kaelin CB, Candille SI, Yu B, Jackson P, Thompson DA, Nix MA, Binkley J, Millhauser GL, Barsh GS (2008) New ligands for melanocortin receptors. Int J Obes (Lond) 32(Suppl 7):S19–27. doi:10.1038/ijo.2008.234

    Article  CAS  Google Scholar 

  33. Kang HY, Chung E, Lee M, Cho Y, Kang WH (2004) Expression and function of peroxisome proliferator-activated receptors in human melanocytes. Br J Dermatol 150:462–468. doi:10.1111/j.1365-2133.2004.05844.x

    Article  CAS  PubMed  Google Scholar 

  34. Kehrer JP, Biswal SS, La E, Thuillier P, Datta K, Fischer SM, Vanden Heuvel JP (2001) Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886. Biochem J 356:899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489–1498. doi:10.1172/JCI6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kintscher U, Law RE (2005) PPARgamma-mediated insulin sensitization: the importance of fat versus muscle. Am J Physiol Endocrinol Metab 288:E287–E291. doi:10.1152/ajpendo.00440.2004

    Article  CAS  PubMed  Google Scholar 

  37. Kour H (2015) Analysis on image color model. Int J Adv Res Comput Commun Eng 4:233–255. doi:10.17148/IJARCCE.2015.41253

    Article  Google Scholar 

  38. Lu M, Sarruf DA, Talukdar S, Sharma S, Li P, Bandyopadhyay G, Nalbandian S, Fan W, Gayen JR, Mahata SK et al (2011) Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat Med 17:618–622. doi:10.1038/nm.2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maresca V, Flori E, Camera E, Bellei B, Aspite N, Ludovici M, Catricala C, Cardinali G, Picardo M (2013) Linking alphaMSH with PPARgamma in B16-F10 melanoma. Pigment Cell Melanoma Res 26:113–127. doi:10.1111/j.1755-148X.2012.01042.x

    Article  CAS  PubMed  Google Scholar 

  40. Martinez-Liarte JH, Solano F, Garcia-Borron JC, Jara JR, Lozano JA (1992) Alpha-MSH and other melanogenic activators mediate opposite effects on tyrosinase and dopachrome tautomerase in B16/F10 mouse melanoma cells. J Invest Dermatol 99:435–439

    Article  CAS  PubMed  Google Scholar 

  41. Meng RS, Pei ZH, Yin R, Zhang CX, Chen BL, Zhang Y, Liu D, Xu AL, Dong YG (2009) Adenosine monophosphate-activated protein kinase inhibits cardiac hypertrophy through reactivating peroxisome proliferator-activated receptor-alpha signaling pathway. Eur J Pharmacol 620:63–70. doi:10.1016/j.ejphar.2009.08.024

    Article  CAS  PubMed  Google Scholar 

  42. Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257:1248–1251

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura MT, Cheon Y, Li Y, Nara TY (2004) Mechanisms of regulation of gene expression by fatty acids. Lipids 39:1077–1083

    Article  CAS  PubMed  Google Scholar 

  44. Ortonne JP (1992) Retinoic acid and pigment cells: a review of in-vitro and in-vivo studies. Br J Dermatol 127(Suppl 41):43–47

    Article  PubMed  Google Scholar 

  45. Peyrl A, Chocholous M, Kieran MW, Azizi AA, Prucker C, Czech T, Dieckmann K, Schmook MT, Haberler C, Leiss U et al (2012) Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer 59:511–517. doi:10.1002/pbc.24006

    Article  PubMed  Google Scholar 

  46. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53. doi:10.1016/j.febslet.2007.11.034

    Article  CAS  PubMed  Google Scholar 

  47. Ruhl R, Krzyzosiak A, Niewiadomska-Cimicka A, Rochel N, Szeles L, Vaz B, Wietrzych-Schindler M, Alvarez S, Szklenar M, Nagy L et al (2015) 9-cis-13,14-Dihydroretinoic acid is an endogenous retinoid acting as rxr ligand in mice. PLoS Genet 11:e1005213. doi:10.1371/journal.pgen.1005213

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sato K, Morita M, Ichikawa C, Takahashi H, Toriyama M (2008) Depigmenting mechanisms of all-trans retinoic acid and retinol on B16 melanoma cells. Biosci Biotechnol Biochem 72:2589–2597. doi:10.1271/bbb.80279

    Article  CAS  PubMed  Google Scholar 

  49. Sertznig P, Dunlop T, Seifert M, Tilgen W, Reichrath J (2009) Cross-talk between vitamin D receptor (VDR)- and peroxisome proliferator-activated receptor (PPAR)-signaling in melanoma cells. Anticancer Res 29:3647–3658

    CAS  PubMed  Google Scholar 

  50. Shoag J, Haq R, Zhang M, Liu L, Rowe GC, Jiang A, Koulisis N, Farrel C, Amos CI, Wei Q et al (2013) PGC-1 coactivators regulate MITF and the tanning response. Mol Cell 49:145–157. doi:10.1016/j.molcel.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  51. Slominski A, Wortsman J, Luger T, Paus R, Solomon S (2000) Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 80:979–1020

    CAS  PubMed  Google Scholar 

  52. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228. doi:10.1152/physrev.00044.2003

    Article  CAS  PubMed  Google Scholar 

  53. Slominski A, Zbytek B, Slominski R (2009) Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer 124:1470–1477. doi:10.1002/ijc.24005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Slominski A, Zmijewski MA, Pawelek J (2012) l-tyrosine and l-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 25:14–27. doi:10.1111/j.1755-148X.2011.00898.x

    Article  CAS  PubMed  Google Scholar 

  55. Slominski A, Postlethwaite AE (2015) Skin under the sun: when melanin pigment meets vitamin D. Endocrinology 156:1–4. doi:10.1210/en.2014-1918

    Article  PubMed  PubMed Central  Google Scholar 

  56. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J (2013) Key role of CRF in the skin stress response system. Endocr Rev 34:827–884. doi:10.1210/er.2012-1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Slominski RM, Zmijewski MA, Slominski AT (2015) The role of melanin pigment in melanoma. Exp Dermatol 24:258–259. doi:10.1111/exd.12618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smit NP, Van der Meulen H, Koerten HK, Kolb RM, Mommaas AM, Lentjes EG, Pavel S (1997) Melanogenesis in cultured melanocytes can be substantially influenced by l-tyrosine and l-cysteine. J Invest Dermatol 109:796–800. doi:10.1111/1523-1747.ep12340980

    Article  CAS  PubMed  Google Scholar 

  59. Solomon S (1999) POMC-derived peptides and their biological action. Ann N Y Acad Sci 885:22–40

    Article  CAS  PubMed  Google Scholar 

  60. Suwa M, Nakano H, Kumagai S (2003) Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol (1985) 95:960–968. doi:10.1152/japplphysiol.00349.2003

    Article  CAS  Google Scholar 

  61. Suzuki I, Cone RD, Im S, Nordlund J, Abdel-Malek ZA (1996) Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology 137:1627–1633. doi:10.1210/endo.137.5.8612494

    CAS  PubMed  Google Scholar 

  62. Svensson SP, Lindgren S, Powell W, Green H (2003) Melanin inhibits cytotoxic effects of doxorubicin and daunorubicin in MOLT 4 cells. Pigment Cell Res 16:351–354

    Article  CAS  PubMed  Google Scholar 

  63. Vachtenheim J, Borovansky J (2010) “Transcription physiology” of pigment formation in melanocytes: central role of MITF. Exp Dermatol 19:617–627. doi:10.1111/j.1600-0625.2009.01053.x

    Article  CAS  PubMed  Google Scholar 

  64. Vsevolodov EB, Ito S, Wakamatsu K, Kuchina II, Latypov IF (1991) Comparative analysis of hair melanins by chemical and electron spin resonance methods. Pigment Cell Res 4:30–34

    Article  CAS  PubMed  Google Scholar 

  65. Wilk A, Urbanska K, Grabacka M, Mullinax J, Marcinkiewicz C, Impastato D, Estrada JJ, Reiss K (2012) Fenofibrate-induced nuclear translocation of FoxO3A triggers Bim-mediated apoptosis in glioblastoma cells in vitro. Cell Cycle 11:2660–2671. doi:10.4161/cc.21015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wilk A, Wyczechowska D, Zapata A, Dean M, Mullinax J, Marrero L, Parsons C, Peruzzi F, Culicchia F, Ochoa A et al (2015) Molecular mechanisms of fenofibrate-induced metabolic catastrophe and glioblastoma cell death. Mol Cell Biol 35:182–198. doi:10.1128/MCB.00562-14

    Article  PubMed  Google Scholar 

  67. Wolnicka-Glubisz A, Pecio A, Podkowa D, Plonka PM, Grabacka M (2013) HGF/SF increases number of skin melanocytes but does not alter quality or quantity of follicular melanogenesis. PLoS One 8:e74883. doi:10.1371/journal.pone.0074883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wolnicka-Glubisz A, Nogal K, Zadlo A, Plonka PM (2015) Curcumin does not switch melanin synthesis towards pheomelanin in B16F10 cells. Arch Dermatol Res 307:89–98. doi:10.1007/s00403-014-1523-1

    Article  CAS  PubMed  Google Scholar 

  69. Wood JM, Jimbow K, Boissy RE, Slominski A, Plonka PM, Slawinski J, Wortsman J, Tosk J (1999) What’s the use of generating melanin? Exp Dermatol 8:153–164

    Article  CAS  PubMed  Google Scholar 

  70. Xie T, Nguyen T, Hupe M, Wei ML (2009) Multidrug resistance decreases with mutations of melanosomal regulatory genes. Cancer Res 69:992–999. doi:10.1158/0008-5472.CAN-08-0506

    Article  CAS  PubMed  Google Scholar 

  71. Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y et al (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol 17:1240–1254. doi:10.1210/me.2002-0190

    Article  CAS  PubMed  Google Scholar 

  72. Yoshimura K, Tsukamoto K, Okazaki M, Virador VM, Lei TC, Suzuki Y, Uchida G, Kitano Y, Harii K (2001) Effects of all-trans retinoic acid on melanogenesis in pigmented skin equivalents and monolayer culture of melanocytes. J Dermatol Sci 27(Suppl 1):S68–S75

    Article  CAS  PubMed  Google Scholar 

  73. Zapletalova D, Andre N, Deak L, Kyr M, Bajciova V, Mudry P, Dubska L, Demlova R, Pavelka Z, Zitterbart K et al (2012) Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Int Soc Cell 82:249–260. doi:10.1159/000336483

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Foundation for Polish Science grant to MG in the POMOST program co-financed by the European Union within European Regional Development Fund. We would like to thank Dr. Heinz Arnheiter from the National Institute of Neurological Disorders and Stroke, USA for excellent anti-MITF antibody, and Dr. Vincent Hearing from the National Cancer Institute, USA for αPEP7 and αPEP8 antibodies. The Faculty of Biochemistry, Biophysics, and Biotechnology of Jagiellonian University is a partner of the Leading National Research Center (KNOW) supported by the Polish Ministry of Science and Higher Education. The paper was partially supported from this fund (PMP, Grant KNOW 35p/10/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Grabacka.

Ethics declarations

Conflict of interest

The authors have neither financial nor ethical conflict of interest to declare. The study does not involve any human participants and animal experiments. All the funding institutions are mentioned above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabacka, M., Wieczorek, J., Michalczyk-Wetula, D. et al. Peroxisome proliferator-activated receptor α (PPARα) contributes to control of melanogenesis in B16 F10 melanoma cells. Arch Dermatol Res 309, 141–157 (2017). https://doi.org/10.1007/s00403-016-1711-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-016-1711-2

Keywords

Navigation