Skip to main content

Advertisement

Log in

Association of TGFβ1 and SMAD4 variants in the etiology of keloid scar in the Malay population

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Keloid is a complex condition with environmental and genetic risk-contributing factors. Two candidate genes, TGFβ1 and SMAD4, located in the same signaling pathway are highly expressed in the keloid fibroblast cells. In a case–control design, TGFβ1 haplotypes showed association with the risk of keloid in the present study. The CC haplotype, composed of both c.29C>T and −509T>C variants, was observed more frequently among cases (Corrected p = 0.037, OR = 2.07, 95 % CI = 0.87–4.93), showing a 4.5-fold increased risk for keloid. The AG genotype of the SMAD4 c.5131A>G variant showed a trend of significance (p = 0.0573, OR = 1.75, 95 % CI = 0.99–3.13). Taken together, either of these variants is most probably causative at the expression level or is in linkage disequilibrium with other causative variants in a complex pattern together with the environmental factors that contribute to the condition. To the best of our knowledge, there is only one documented report on a relationship between TGFβ1 and keloid with no association within the Caucasian population, while there have not been any reports for SMAD4. Therefore, the present study is likely the first research showing a significant association between TGFβ1 variants and keloids in the Malay population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  2. Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW (2002) Genetic susceptibility to keloid disease and transforming growth factor beta 2 polymorphisms. Br J Plast Surg 55:283–286

    Article  PubMed  CAS  Google Scholar 

  3. Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW (2003) Genetic susceptibility to keloid disease and hypertrophic scarring: transforming growth factor beta1 common polymorphisms and plasma levels. Plast Reconstr Surg 111(2):535–543

    Article  PubMed  Google Scholar 

  4. Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW (2004) Genetic susceptibility to keloid disease: transforming growth factor beta receptor gene polymorphisms are not associated with keloid disease. Exp Dermatol 13:120–124

    Article  PubMed  CAS  Google Scholar 

  5. Becker T, Cichon S, Jonson E, Knapp M (2005) Multiple testing in the context of haplotype analysis revisited: application to case–control data. Ann Hum Genet 69:747–756

    Article  PubMed  CAS  Google Scholar 

  6. Bran GM, Goessler UR, Hormann K, Riedel F, Sadick H (2009) Keloids: current concepts of pathogenesis (review). Int J Mol Med 24:283–293

    Article  PubMed  CAS  Google Scholar 

  7. Brown JJ, Ollier W, Arscott G, Ke X, Lamb J, Day P, Bayat A (2008) Genetic susceptibility to keloid scarring: SMAD gene SNP frequencies in Afro-Caribbeans. Exp Dermatol 17:610–613

    Article  PubMed  CAS  Google Scholar 

  8. Brown JJ, Ollier WE, Thomson W, Bayat A (2008) Positive association of HLA-DRB1*15 with keloid disease in Caucasians. Int J Immunogenet 35:303–307

    Article  PubMed  CAS  Google Scholar 

  9. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85:47–64

    Article  PubMed  CAS  Google Scholar 

  10. Gjessing HK, Lie RT (2006) Case-parent triads: estimating single- and double-dose effects of fetal and maternal disease gene haplotypes. Ann Hum Genet 70:382–396

    Article  PubMed  CAS  Google Scholar 

  11. Kelly AP (2004) Medical and surgical therapies for keloids. Dermatol Ther 17:212–218

    Article  PubMed  Google Scholar 

  12. Lee TY, Chin GS, Kim WJ, Chau D, Gittes GK, Longaker MT (1999) Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann Plast Surg 43:179–184

    PubMed  CAS  Google Scholar 

  13. Li J, Cao J, Li M, Yu Y, Yang Y, Xiao X, Wu Z, Wang L, Tu Y, Chen H (2011) Collagen triple helix repeat containing-1 inhibits transforming growth factor-b1-induced collagen type I expression in keloid. Br J Dermatol 164:1030–1036

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Gao J, Liu X, Lu F, Liu H (2008) Correlation analysis between clinical phenotypes of keloids and polymorphism of p53 gene codon 72. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22:1433–1436

    PubMed  CAS  Google Scholar 

  15. Marneros AG, Norris JE, Olsen BR, Reichenberger E (2001) Clinical genetics of familial keloids. Arch Dermatol 137:1429–1434

    PubMed  CAS  Google Scholar 

  16. Marneros AG, Norris JE, Watanabe S, Reichenberger E, Olsen BR (2004) Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol 122:1126–1132

    Article  PubMed  CAS  Google Scholar 

  17. Nassiri M, Woolery-Lloyd H, Ramos S, Jacob SE, Gugic D, Viciana A, Romanelli P, Elgart G, Berman B, Vincek V (2009) Gene expression profiling reveals alteration of caspase 6 and 14 transcripts in normal skin of keloid-prone patients. Arch Dermatol Res 301:183–188

    Article  PubMed  CAS  Google Scholar 

  18. Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104:1435–1458

    Article  PubMed  CAS  Google Scholar 

  19. Oluwasanmi JO (1974) Keloids in the African. Clin Plast Surg 1:179–195

    PubMed  CAS  Google Scholar 

  20. Omo-Dare P (1975) Genetic studies on keloid. J Natl Med Assoc 67:428–432

    PubMed  CAS  Google Scholar 

  21. Peltonen J, Hsiao LL, Jaakkola S, Sollberg S, Aumailley M, Timpl R, Chu ML, Uitto J (1991) Activation of collagen gene expression in keloids: co-localization of type I and VI collagen and transforming growth factor-beta 1 mRNA. J Invest Dermatol 97:240–248

    Article  PubMed  CAS  Google Scholar 

  22. Ridout CK, Keighley P, Krywawych S, Brown RM, Brown GK (2008) A putative exonic splicing enhancer in exon 7 of the PDHA1 gene affects splicing of adjacent exons. Hum Mutat 29:451

    Article  PubMed  CAS  Google Scholar 

  23. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  24. Segrè AV, Groop L, Mootha VK, Daly MJ, Altshuler D, DIAGRAM Consortium, MAGIC investigators (2010) Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6(8):Pii:e1001058

    Article  Google Scholar 

  25. Shaffer JJ, Taylor SC, Cook-Bolden F (2002) Keloidal scars: a review with a critical look at therapeutic options. J Am Acad Dermatol 46:S63–S97

    Article  PubMed  Google Scholar 

  26. Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302:319–339

    Article  PubMed  CAS  Google Scholar 

  27. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691

    Article  PubMed  CAS  Google Scholar 

  28. Yan X, Gao JH, Chen Y, Song M, Liu XJ (2007) Preliminary linkage analysis and mapping of keloid susceptibility locus in a Chinese pedigree. Zhonghua Zheng Xing Wai Ke Za Zhi 23:32–35

    PubMed  Google Scholar 

  29. Zuffardi O, Fraccaro M (1982) Gene mapping and serendipity. The locus for torticollis, keloids, cryptorchidism and renal dysplasia (31430, Mckusick) is at Xq28, distal to the G6PD locus. Hum Genet 62:280–281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the patients and their family members for their willing cooperation and participation in this study and to the members of the Human Genome Center and Reconstructive Sciences Unit for their help. This study was supported by a USM short-term grant (No. 304/PPSP/61310017).

Conflict of interest

The authors state no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Sukari Halim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emami, A., Halim, A.S., Salahshourifar, I. et al. Association of TGFβ1 and SMAD4 variants in the etiology of keloid scar in the Malay population. Arch Dermatol Res 304, 541–547 (2012). https://doi.org/10.1007/s00403-012-1262-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1262-0

Keywords

Navigation