Skip to main content

Advertisement

Log in

UVB activation of NF-κB in normal human keratinocytes occurs via a unique mechanism

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The transcription factor nuclear factor-κB (NF-κB) is comprised of a family of proteins that are implicated in a wide variety of cellular functions, including the control of cell proliferation, cell survival, and cellular differentiation. Although NF-κB is activated in response to inflammatory signals or cellular stress, in the skin NF-κB is also implicated to play a role in normal epidermal homeostasis. Often the cellular consequences of NF-κB activation are dependent on the specific triggering stimuli. Thus, we have compared the activation mechanism and the function of NF-κB following two common stimuli of normal human keratinocytes, inflammatory mediators (tumor necrosis factor alpha (TNFα)), and cellular stress (ultraviolet light B (UVB) irradiation). These experiments indicate that although both TNFα and UVB stimulate NF-κB DNA-binding activity in normal human keratinocytes, the mechanisms of NF-κB activation by each stimulus is different. In contrast to the NF-κB response following TNFα, activation of NF-κB by UVB is independent of IκBα degradation. Analyses of NF-κB-dependent gene expression following TNFα or UVB treatment demonstrate that each of these stimulatory signals results in a specific subset of genes that are activated or repressed. These studies provide further evidence of the stimuli and cell-type specific nature of NF-κB function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adhami VM, Afaq F, Ahmad N (2003) Suppression of ultraviolet B exposure-mediated activation of NF-kappa-B in normal human keratinocytes by resveratrol. Neoplasia 5:74–82

    PubMed  CAS  Google Scholar 

  2. Aggarwal BB (2004) Nuclear factor-κB: the enemy within. Cancer Cell 6:203–208

    Article  PubMed  CAS  Google Scholar 

  3. Bell S, Degitz K, Quirling M, Jilg N, Page S, Brand K (2002) Involvement of NF-κB signalling in skin physiology and disease. Cell Signal 15:1–7

    Article  Google Scholar 

  4. Bernard D, Gosselin K, Monte D, Vercamer C, Bouali F, Pourtier A, Vandenbunder B, Abbadie C (2004) Involvement of Rel/Nuclear factor-κB transcription factors in keratinocyte senescence. Cancer Res 64:472–481

    Article  PubMed  CAS  Google Scholar 

  5. Budunova IV, Perez P, Vaden VR, Spiegelman VS, Slaga TJ, Jorcano JL (1999) Increased expression of p50-NF-κB and constitutive activation of NF-κB transcription factors during mouse skin carcinogenesis. Oncogene 18:7423–7431

    Article  PubMed  CAS  Google Scholar 

  6. Chaturvedi V, Qin JZ, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (2001) Abnormal NF-κB signaling pathway with enhanced susceptibility to apoptosis in immortalized keratinocytes. J Dermatol Sci 26:67–78

    Article  PubMed  CAS  Google Scholar 

  7. Chen LF, Greene WC (2004) Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol 5:392–401

    Article  PubMed  CAS  Google Scholar 

  8. Chen LF, Mu Y, Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear funcations. EMBO J 21:6539–6548

    Article  PubMed  CAS  Google Scholar 

  9. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S, Lin Q, Kubo Y, Khavari PA (2003) NF-κB blockade and oncogenic ras trigger invasive human epidermal neoplasia. Nature 421:639–643

    Article  PubMed  CAS  Google Scholar 

  10. Delhalle S, Blasius R, Dicato M, Diederich M (2004) A beginner’s guide to NF-κB signaling pathways. Ann NY Acad Sci 1030:1–13

    Article  PubMed  CAS  Google Scholar 

  11. Fan C, Yang J, Engelhardt JF (2002) Temporal pattern of NFkB activation influences apoptotic cell fate in a stimuli-dependent fashion. J Cell Sci 115:4843–4853

    Article  PubMed  CAS  Google Scholar 

  12. Fujioka S, Sclabas G, Schmidt C, Niu J, Frederick W, Dong Q, Abbruzzese J, Evans D, Baker C, Chiano P (2003) Inhibition of constitutive NF-κB activity by IκBαM suppresses tumorigenesis. Oncogene 22:1365–1370

    Article  PubMed  CAS  Google Scholar 

  13. Hinata K, Gervin AM, Zhang YJ, Khavari PA (2003) Divergent gene regulation and growth effects by NFκB in epithelial and mesenchymal cells of human skin. Oncogene 22:1955–1964

    Article  PubMed  CAS  Google Scholar 

  14. Hogerlinden MV, Rozell BL, Ahrlund-Richter L, Tofgard R (1999) Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/NF-κB signaling. Cancer Res 59:3299–3303

    PubMed  Google Scholar 

  15. Jijon H, Allard B, Jobin C (2004) NF-κB inducing kinase activates NF-κB transcription activity independently of IκB kinase through a p38 MAPK-dependent RelA phosphorylation pathway. Cell Signal 16:1023–1032

    PubMed  CAS  Google Scholar 

  16. Karin M (1999) The beginning of the end: IκB kinase (IKK) and NF-κB activation. J Biol Chem 274:27339–27342

    Article  PubMed  CAS  Google Scholar 

  17. Kato T Jr, Delhase M, Hoffman A, Karin M (2003) CK2 is a c-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12:829–839

    Article  PubMed  CAS  Google Scholar 

  18. Kaufman C, Fuchs E (2000) It’s got you covered: NF-κB in the epidermis. J Cell Biol 149:999–1004

    Article  PubMed  CAS  Google Scholar 

  19. Kuhn C, Hurwitz SA, Kumar MG, Cotton J, Spandau DF (1999) Activation of insulin like growth factor-1 receptor promotes the survival of human keratinocytes following UVB irradiation. Int J Cancer 80:431–438

    Article  PubMed  CAS  Google Scholar 

  20. Luan B, Zhang Z, Wu Y, Kang J, Pei G (2005) β-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-κB activation. EMBO J 24:4237–4246

    Article  PubMed  CAS  Google Scholar 

  21. Madrid LV, Mayo MW, Reuther JY, Baldwin AS (2001) Akt stimulates the transactivation potential of RelA/p65 subunit of NFκB through utilization of the IKK and activation of the mitogen-activated protein kinase p38. J Biol Chem 276:18934–18940

    Article  PubMed  CAS  Google Scholar 

  22. Madrid LV, Wang C, Guttridge DC, Schottelius AJG, Baldwin AS, Mayo MW (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-κB. Mol Cell Biol 20:1626–1638

    Article  PubMed  CAS  Google Scholar 

  23. Meng F, Liu L, Chin PC, D’Mello SR (2002) Akt is a downstream target of NF-κB. J Biol Chem 277:29674–29680

    Article  PubMed  CAS  Google Scholar 

  24. Meng F, D’Mello SR (2003) NF-κB stimulates akt phosphorylation and gene expression by distinct signaling mechanisms. Biochim Biophys Acta 1630:35–40

    PubMed  CAS  Google Scholar 

  25. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  26. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-κB activation by TNFα requires the akt serine threonine kinase. Nature 401:82–85

    Article  PubMed  CAS  Google Scholar 

  27. Perkins ND (2004) Regulation of NF-kB by atypical activators and tumour suppressors. Biochem Soc Trans 32:936–939

    Article  PubMed  CAS  Google Scholar 

  28. Schmitz ML, Mattioli I, Buss H, Kracht M (2004) NF-κB: a multifaceted transcription factor regulated at several levels. Chembiochem 5:1348–1358

    Article  PubMed  CAS  Google Scholar 

  29. Seitz C, Lin Q, Deng H, Khavari PA (1998) Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc Natl Acad Sci USA 95:2307–2312

    Article  PubMed  CAS  Google Scholar 

  30. Seitz C, Freiberg RA, Hinata K, Khavari PA (2000) NF-κB determines localization and features of cell death in epidermis. J Clin Invest 105:253–260

    Article  PubMed  CAS  Google Scholar 

  31. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, et al (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293:1495–1499

    Article  PubMed  CAS  Google Scholar 

  32. Southall MD, Isenberg JS, Nakshatri H, Yi Q, Pei Y, Spandau DF, Travers JB (2001) The platelet-activating factor receptor protects epidermal cells from TNF and TRAIL-induced apoptosis through a NF-κB-dependent process. J Biol Chem 276:45548–45554

    Article  PubMed  CAS  Google Scholar 

  33. Takao J, Yudate T, Das A, Shikano S, Bonkobara M, Ariizumi K, Cruz PD (2003) Expression of NF-κB in epidermis and the relationship between activation and inhibition of keratinocyte growth. Br J Dermatol 148:680–688

    Article  PubMed  CAS  Google Scholar 

  34. Tergaonkar B, Bottero V, Ikawa M, Li QT, Verma IM (2003) IκB kinase-independent IκBα degradation pathway: functional NF-κB activity and implications for cancer therapy. Mol Cell Biol 23:8070–8083

    Article  PubMed  CAS  Google Scholar 

  35. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  PubMed  CAS  Google Scholar 

  36. Zhang JY, Tao S, Kimmel R, Khavari PA (2005) CDK4 regulation by TNFR1 and JNK is required for NF-κB-mediated epidermal growth control. J Cell Biol 168:561–566

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Harikrishna Nakshatri for helping us establish the EMSA protocol in our lab and we thank Dr. Jeffrey Travers for his helpful comments on the project. This work was supported by a grant from the National Institutes of Health (R01ES11155 to DFS). These studies were funded by a grant from the National Institutes of Health to DFS (R01ES11155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan F. Spandau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, D.A., Spandau, D.F. UVB activation of NF-κB in normal human keratinocytes occurs via a unique mechanism. Arch Dermatol Res 299, 93–101 (2007). https://doi.org/10.1007/s00403-006-0729-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-006-0729-2

Keywords

Navigation