Skip to main content
Log in

Sagittal femoral condylar shape varies along a continuum from spherical to ovoid: a systematic review and meta-analysis

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Considerable anatomic variations of sagittal femoral condylar shape have been reported, with a continuum between spherical (or single-radius) and ovoid (or multi-radius) condyles. The purpose of this systematic review and meta-analysis was to critically appraise and synthesise the available literature on the sagittal femoral profile. The hypothesis was that studies would reveal considerable variability among individuals, but also in their methodology to quantify sagittal profiles.

Methods

This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. On 10 September 2021 two authors searched for Level I to IV studies that reported on the sagittal curvature of the medial and/or lateral femoral condyles using the MEDLINE®, EMBASE® and Cochrane Library. Results were summarised by tabulating means, standard deviations and/or ranges for the reported radii-of-curvature, or ellipsoidal semi-major and semi-minor lengths of the condyles. To quantify sagittal ‘ovoidicity’ and asymmetry, results were stratified according to coordinate reference frame (posterior condylar axis (PCA), clinical and surgical transepicondylar axis (cTEA and sTEA), unified sagittal plane (USP), or unclear) and summarised in forest plots as standardised mean differences (SMD).

Results

Thirty-eight articles were eligible for full text extraction, quantifying sagittal radii-of-curvature by best-fit circles (BFC), ellipsoids, polynomials, spherical or cylindrical fitting. Studies with clear definition of the measurement plane revealed that both condyles were generally ovoid, with considerably greater ‘ovoidicity’ at the medial condyle (SMD, 4.09) versus the lateral condyle (SMD, 3.33). In addition, distal condylar radii were greater medially when measured normal to the TEA (cTEA: SMD, 0.81; sTEA: SMD, 0.79), but greater laterally when measured in a USP (SMD, − 0.83). Posterior condylar radii were greater laterally when measured in a USP (SMD, − 0.60).

Conclusion

Studies reported considerable variability of sagittal femoral condylar radii-of-curvature, which are not incremental, but rather a continuum that ranges from spherical to ovoid. Although this variation could be accommodated by single-, dual- and multi-radii femoral components, a surgeon typically uses only one or two TKA designs. Hence, there is a risk of mismatch between the native and prosthetic sagittal profile that could result in mid-flexion ligament imbalance unless other parameters are changed. These findings support the drive towards patient-specific implants to potentially achieve accurate sagittal bone–implant fit through implant customisation.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koh Y-G, Nam J-H, Chung H-S, Kim H-J, Baek C, Kang K-T (2020) Gender difference exists in sagittal curvature of the distal femoral condyle morphology for osteoarthritic population. Knee Surg Sports Traumatol Arthrosc 28(12):3740–3746. https://doi.org/10.1007/s00167-019-05769-9

    Article  PubMed  Google Scholar 

  2. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118. https://doi.org/10.1097/00003086-199811000-00016

    Article  Google Scholar 

  3. Freeman MA, Pinskerova V (2003) The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res 410:35–43. https://doi.org/10.1097/01.blo.0000063598.67412.0d

    Article  Google Scholar 

  4. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    Article  Google Scholar 

  5. Pedoia V, Lansdown DA, Zaid M, McCulloch CE, Souza R, Ma CB, Li X (2015) Three-dimensional MRI-based statistical shape model and application to a cohort of knees with acute ACL injury. Osteoarthritis Cartilage 23(10):1695–1703. https://doi.org/10.1016/j.joca.2015.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lansdown DA, Pedoia V, Zaid M, Amano K, Souza RB, Li X, Ma CB (2017) Variations in knee kinematics after ACL injury and after reconstruction are correlated with bone shape differences. Clin Orthop Relat Res 475(10):2427–2435. https://doi.org/10.1007/s11999-017-5368-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grothues SAGA, Radermacher K (2021) Variation of the three-dimensional femoral j-curve in the native knee. J Pers Med. https://doi.org/10.3390/jpm11070592

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brinkmann EJ, Fitz W (2021) Custom total knee: understanding the indication and process. Arch Orthop Trauma Surg 141(12):2205–2216. https://doi.org/10.1007/s00402-021-04172-9

    Article  PubMed  Google Scholar 

  9. Asseln M, Grothues S, Radermacher K (2021) Relationship between the form and function of implant design in total knee replacement. J Biomech. https://doi.org/10.1016/j.jbiomech.2021.110296

    Article  PubMed  Google Scholar 

  10. Cho KJ, Erasmus PJ, Müller JH (2019) Sagittal shapes of current fixed-bearing unicompartmental knee replacements differ from those of normal knees. Knee 26(3):759–767. https://doi.org/10.1016/j.knee.2019.03.002

    Article  PubMed  Google Scholar 

  11. Kosel J, Giouroudi I, Scheffer C, Dillon E, Erasmus P (2010) Anatomical study of the radius and center of curvature of the distal femoral condyle. J Biomech Eng. https://doi.org/10.1115/1.4002061

    Article  PubMed  Google Scholar 

  12. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Qureshi R, Mattis P, Lisy K, Mu P-F (2020) Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z (eds) JBI Manual for Evidence Synthesis. JBI. https://doi.org/10.46658/JBIMES-20-08

  13. Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 16(4):493–497. https://doi.org/10.1054/arth.2001.23621

    Article  CAS  PubMed  Google Scholar 

  14. Nodzo SR, Franceschini V, Cruz DS, Gonzalez Della Valle A (2018) The flexion space is more reliably balanced when using the transepicondylar axis as compared to the posterior condylar line. Knee Surg Sports Traumatol Arthrosc 26(11):3265–3271. https://doi.org/10.1007/s00167-018-4855-0

    Article  PubMed  Google Scholar 

  15. Li K, Langdale E, Tashman S, Harner C, Zhang X (2012) Gender and condylar differences in distal femur morphometry clarified by automated computer analyses. J Orthop Res 30(5):686–692. https://doi.org/10.1002/jor.21575

    Article  PubMed  Google Scholar 

  16. Faraone SV (2008) Interpreting estimates of treatment effects: implications for managed care. P T 33(12):700–711

    PubMed  PubMed Central  Google Scholar 

  17. Asseln M, Hänisch C, Schick F, Radermacher K (2018) Gender differences in knee morphology and the prospects for implant design in total knee replacement. Knee 25(4):545–558. https://doi.org/10.1016/j.knee.2018.04.005

    Article  PubMed  Google Scholar 

  18. Biscević M, Hebibović M, Smrke D (2005) Variations of femoral condyle shape. Coll Antropol 29(2):409–414

    PubMed  Google Scholar 

  19. Biščević M, Ljuca F, Biščević A, Gavrankapetanović I, Smrke BUR, Ozturk C, Smrke D (2008) Morphometric alteration of femoral condyles due to knee osteoarthritis. Coll Antropol 32(3):875–879

    PubMed  Google Scholar 

  20. Chaurasia A, Tyagi A, Santoshi JA, Chaware P, Rathinam BA (2021) Morphologic features of the distal femur and proximal tibia: a cross-sectional study. Cureus. https://doi.org/10.7759/cureus.12907

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheng FB, Ji XF, Zheng WX, Lai Y, Cheng KL, Feng JC, Li YQ (2010) Use of anthropometric data from the medial tibial and femoral condyles to design unicondylar knee prostheses in the Chinese population. Knee Surg Sports Traumatol Arthrosc 18(3):352–358. https://doi.org/10.1007/s00167-009-0876-z

    Article  PubMed  Google Scholar 

  22. Du PZ, Markolf KL, Levine BD, McAllister DR, Jones KJ (2018) Differences in the radius of curvature between femoral condyles: implications for osteochondral allograft matching. J Bone Jt Surg Am 100(15):1326–1331. https://doi.org/10.2106/jbjs.17.01509

    Article  Google Scholar 

  23. Elias SG, Freeman MA, Gokcay EI (1990) A correlative study of the geometry and anatomy of the distal femur. Clin Orthop Relat Res 260:98–103

    Article  Google Scholar 

  24. Everhart JS, Chaudhari AMW, Flanigan DC (2016) Creation of a simple distal femur morphology classification system. J Orthop Res 34(6):924–931. https://doi.org/10.1002/jor.23102

    Article  PubMed  Google Scholar 

  25. Hokari S, Tanifuji O, Kobayashi K, Mochizuki T, Katsumi R, Sato T, Endo N (2020) The inclination of the femoral medial posterior condyle was almost vertical and that of the lateral was tilted medially. Knee Surg Sports Traumatol Arthrosc 28(12):3858–3864. https://doi.org/10.1007/s00167-020-05856-2

    Article  PubMed  Google Scholar 

  26. Howell SM, Howell SJ, Hull ML (2010) Assessment of the radii of the medial and lateral femoral condyles in varus and valgus knees with osteoarthritis. J Bone Joint Surg Am 92(1):98–104. https://doi.org/10.2106/jbjs.H.01566

    Article  PubMed  Google Scholar 

  27. Kurosawa H, Walker P, Abe S, Garg A (1985) Geometry and motion of the knee for implant and orthotic design. J Biomech 18(7):487–99. https://doi.org/10.1016/0021-9290(85)90663-3

    Article  CAS  PubMed  Google Scholar 

  28. Leszko F, Hovinga KR, Lerner AL, Komistek RD, Mahfouz MR (2011) In vivo normal knee kinematics: is ethnicity or gender an influencing factor? Clin Orthop Relat Res 469(1):95–106. https://doi.org/10.1007/s11999-010-1517-z

    Article  PubMed  Google Scholar 

  29. Lu F, Sun X, Wang W, Zhang Q, Guo W (2021) Anthropometry of the medial femoral condyle in the Chinese population: the morphometric analysis to design unicomparmental knee component. BMC Musculoskelet Disord 22(1):95. https://doi.org/10.1186/s12891-021-03979-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lustig S, Lavoie F, Selmi TA, Servien E, Neyret P (2008) Relationship between the surgical epicondylar axis and the articular surface of the distal femur: an anatomic study. Knee Surg Sports Traumatol Arthrosc 16(7):674–682. https://doi.org/10.1007/s00167-008-0551-9

    Article  PubMed  Google Scholar 

  31. Malek IA, Moorehead JD, Abiddin Z, Montgomery SC (2009) The correlation between femoral condyle radii and subject height. Clin Anat 22(4):517–522. https://doi.org/10.1002/ca.20787

    Article  CAS  PubMed  Google Scholar 

  32. Martelli S, Pinskerova V (2002) The shapes of the tibial and femoral articular surfaces in relation to tibiofemoral movement. J Bone Jt Surg Br 84(4):607–613. https://doi.org/10.1302/0301-620x.84b4.12149

    Article  CAS  Google Scholar 

  33. Matsuda S, Matsuda H, Miyagi T, Sasaki K, Iwamoto Y, Miura H (1998) Femoral condyle geometry in the normal and varus knee. Clin Orthop Relat Res 349:183–188

    Article  Google Scholar 

  34. Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, Nabeyama R, Iwamoto Y (2004) Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res 22(1):104–109. https://doi.org/10.1016/S0736-0266(03)00134-7

    Article  PubMed  Google Scholar 

  35. Monk AP, Choji K, O’Connor JJ, Goodfellow JW, Murray DW (2014) The shape of the distal femur: a geometrical study using MRI. Bone Jt J. https://doi.org/10.1302/0301-620x.96b12.33964

    Article  Google Scholar 

  36. Niki Y, Nagai K, Sassa T, Harato K, Suda Y (2017) Comparison between cylindrical axis-reference and articular surface-reference femoral bone cut for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25(12):3741–3746. https://doi.org/10.1007/s00167-016-4251-6

    Article  PubMed  Google Scholar 

  37. Nuño N, Ahmed AM (2001) Sagittal profile of the femoral condyles and its application to femorotibial contact analysis. J Biomech Eng 123(1):18–26. https://doi.org/10.1115/1.1339819

    Article  PubMed  Google Scholar 

  38. Nuño N, Ahmed AM (2003) Three-dimensional morphometry of the femoral condyles. Clin Biomech (Bristol, Avon) 18(10):924–932. https://doi.org/10.1016/s0268-0033(03)00172-4

    Article  PubMed  Google Scholar 

  39. Rao Z, Zhou C, Zhang Q, Kernkamp WA, Wang J, Cheng L, Foster TE, Bedair HS, Li G (2021) There are isoheight points that measure constant femoral condyle heights along the knee flexion path. Knee Surg Sports Traumatol Arthrosc 29(2):600–607. https://doi.org/10.1007/s00167-020-05990-x

    Article  PubMed  Google Scholar 

  40. Sato T, Mochizuki T (2021) Three-dimensional morphology of the distal femur based on surgical epicondylar axis in the normal elderly population. Knee 30:125–133. https://doi.org/10.1016/j.knee.2021.03.022

    Article  PubMed  Google Scholar 

  41. Siebold R, Axe J, Irrgang JJ, Li K, Tashman S, Fu FH (2010) A computerized analysis of femoral condyle radii in ACL intact and contralateral ACL reconstructed knees using 3D CT. Knee Surg Sports Traumatol Arthrosc 18(1):26–31. https://doi.org/10.1007/s00167-009-0969-8

    Article  PubMed  Google Scholar 

  42. Sylvester AD, Pfisterer T (2012) Quantifying lateral femoral condyle ellipticalness in chimpanzees, gorillas, and humans. Am J Phys Anthropol 149(3):458–467. https://doi.org/10.1002/ajpa.22144

    Article  PubMed  Google Scholar 

  43. van den Heever DJ, Scheffer C, Erasmus P, Dillon E (2012) Classification of gender and race in the distal femur using self organising maps. Knee 19(4):488–492. https://doi.org/10.1016/j.knee.2011.06.009

    Article  PubMed  Google Scholar 

  44. Wang G, Liu M, Zhang Z, Liu S, Zhang G, Yang C (2020) A simplified relationship between the femoral trochlea and the femoral condyle: a sagittal MRI analysis by an ellipse-fitting approach. Clin Anat 33(4):500–506. https://doi.org/10.1002/ca.23395

    Article  CAS  PubMed  Google Scholar 

  45. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Gender differences in the knees of Chinese population. Knee Surg Sports Traumatol Arthrosc 19(1):80–88. https://doi.org/10.1007/s00167-010-1139-8

    Article  PubMed  Google Scholar 

  46. Zhang Z, Liu M, Wen X, Liu S, Zhang G, Yang C (2020) The relationship between the posterior tibial slope and the sagittal femoral condylar shape: two circles and ellipses. Clin Anat 33(7):1075–1081. https://doi.org/10.1002/ca.23543

    Article  PubMed  Google Scholar 

  47. Zoghi M, Hefzy MS, Fu KC, Jackson WT (1992) A three-dimensional morphometrical study of the distal human femur. Proc Inst Mech Eng H 206(3):147–157. https://doi.org/10.1243/pime_proc_1992_206_282_02

    Article  CAS  PubMed  Google Scholar 

  48. Mahfouz M, Abdel Fatah EE, Bowers LS, Scuderi G (2012) Three-dimensional morphology of the knee reveals ethnic differences. Clin Orthop Relat Res 470(1):172–185. https://doi.org/10.1007/s11999-011-2089-2

    Article  PubMed  Google Scholar 

  49. Walker PS, Kurosawa H, Rovick JS, Zimmerman RA (1985) External knee joint design based on normal motion. J Rehabil Res Dev 22(1):9–22. https://doi.org/10.1682/jrrd.1985.01.0009

    Article  CAS  PubMed  Google Scholar 

  50. Eckhoff D, Hogan C, DiMatteo L (2007) An ABJS best paper: difference between the epicondylar and cylindrical axis of the knee. Clin Orthopaed Rel Res. 461:238–244. https://doi.org/10.1097/BLO.0b013e318112416b

    Article  Google Scholar 

  51. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol 134:178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gaëtan Jouen for illustration of Figs. 1, 2 and 4.

Funding

The authors are grateful to "GCS Ramsay Santé pour l’Enseignement et la Recherche" for funding the statistical analysis and manuscript preparation for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Saffarini.

Ethics declarations

Conflict of interest

AD, JHM, LG, and MS, declare that they have no conflicts of interest. TASS reports personal fees from DePuy-Synthes and Symbios, outside the submitted work. MPB reports personal fees from Wright Medical, Integra, DePuy Synthesis, and Symbios, outside the submitted work.

Ethical approval

The study was a systematic review and meta-analysis of published literature and therefore ethical approval by the institutional review board was not required.

Informed consent

The study was a systematic review and meta-analysis of published literature and did not analyse or require any personal patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobbelaere, A., Müller, J.H., Aït-Si-Selmi, T. et al. Sagittal femoral condylar shape varies along a continuum from spherical to ovoid: a systematic review and meta-analysis. Arch Orthop Trauma Surg 143, 3347–3361 (2023). https://doi.org/10.1007/s00402-022-04613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04613-z

Keywords

Navigation