Skip to main content
Log in

Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Since introduction of autologous chondrocyte implantation (ACI), various factors have been described that influence the clinical outcome. The present paper investigates the influence of bone marrow edema at time of treatment on clinical function before and in the early clinical course after ACI.

Methods

67 patients treated with ACI for cartilage defects of the knee joint were included. Presence of subchondral bone marrow edema was graded as absent (1), mild (2), moderate (3) or severe (4) using magnetic resonance (MR) imaging before surgery. All patients were assessed in terms of clinical function before surgery and 6 as well as 12 months after ACI using IKDC and Lysholm scores. Presence of subchondral edema was correlated with functional outcome.

Results

In 18 patients edema on initial MRI was graded as “absent”, while 17 patients had grade 2 edema, 19 patients had grade 3 edema and 13 patients had grade 4 edema. IKDC score increased significantly from 49.8 points (SD ± 14.9) to 72.3 points (SD ± 17.5) at 12 months (p < 0.01). At all time points investigated, patients of group “4” showed inferior results to all other groups (p < 0.05). In addition, in patients without any edema, better clinical function was detected compared to all other groups before surgery (p < 0.05) and compared to group 3 at 6 months following ACI (p < 0.05).

Conclusions

Presence of severe subchondral bone marrow edema seems to correlate with knee function in patients with cartilage defects and may be a reliable prognostic factor for the early clinical course after ACI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  CAS  PubMed  Google Scholar 

  2. Behrens P, Bosch U, Bruns J, Erggelet C, Esenwein SA, Gaissmaier C, Krackhardt T, Lohnert J, Marlovits S, Meenen NM, Mollenhauer J, Nehrer S, Niethard FU, Noth U, Perka C, Richter W, Schafer D, Schneider U, Steinwachs M, Weise K (2004) Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT). Z Orthop Ihre Grenzgeb 142(5):529–539

    Article  CAS  PubMed  Google Scholar 

  3. Steinwachs M (2009) New technique for cell-seeded collagen matrix-supported autologous chondrocyte transplantation. Arthroscopy 25(2):208–211

    Article  PubMed  Google Scholar 

  4. Steinwachs MR, Kreuz PC (2003) Clinical results of autologous chondrocyte transplantation (ACT) using a collagen membrane cartilage surgery and future perspectives. In: Hendrich N, Eulert J (eds) Cartilage surgery and future perspectives, chap 5. Springer, Berlin, pp 37–47

    Google Scholar 

  5. Trattnig S, Pinker K, Krestan C, Plank C, Millington S, Marlovits S (2006) Matrix-based autologous chondrocyte implantation for cartilage repair with HyalograftC: two-year follow-up by magnetic resonance imaging. Eur J Radiol 57(1):9–15

    Article  CAS  PubMed  Google Scholar 

  6. Manfredini M, Zerbinati F, Gildone A, Faccini R (2007) Autologous chondrocyte implantation: a comparison between an open periosteal-covered and an arthroscopic matrix-guided technique. Acta Orthop Belg 73(2):207–218

    PubMed  Google Scholar 

  7. Erggelet C, Sittinger M, Lahm A (2003) The arthroscopic implantation of autologous chondrocytes for the treatment of full-thickness cartilage defects of the knee joint. Arthroscopy 19(1):108–110

    Article  PubMed  Google Scholar 

  8. Erggelet C, Steinwachs MR, Reichelt A (2000) The operative treatment of full thickness cartilage defects in the knee joint with autologous chondrocyte transplantation. Saudi Med J 21(8):715–721

    CAS  PubMed  Google Scholar 

  9. Niemeyer P, Steinwachs M, Erggelet C, Kreuz PC, Kraft N, Kostler W, Mehlhorn A, Sudkamp NP (2008) Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects: clinical results referred to defect localisation. Arch Orthop Trauma Surg 128(11):1223–1231

    Article  PubMed  Google Scholar 

  10. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res (374):212–234

  11. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Sudkamp N (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22(11):1180–1186

    Article  PubMed  Google Scholar 

  12. Rosenberger RE, Gomoll AH, Bryant T, Minas T (2008) Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med 36(12):2336–2344

    Article  PubMed  Google Scholar 

  13. Takahashi T, Tins B, McCall IW, Richardson JB, Takagi K, Ashton K (2006) MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome. Skeletal Radiol 35(1):16–26

    Article  CAS  PubMed  Google Scholar 

  14. Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10(3):150–154

    Article  CAS  PubMed  Google Scholar 

  15. Brittberg M (2000) ICRS clinical cartilage injury evaluation system. 3rd ICRS Meeting Göteborg, Sweden

  16. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res (198):43–49

  17. Henderson IJ, Tuy B, Connell D, Oakes B, Hettwer WH (2003) Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br 85(7):1060–1066

    Article  CAS  PubMed  Google Scholar 

  18. McQueen FM, Ostendorf B (2006) What is MRI bone oedema in rheumatoid arthritis and why does it matter? Arthritis Res Ther 8(6):222

    Article  PubMed  Google Scholar 

  19. Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology 170(3 Pt 1):823–829

    CAS  PubMed  Google Scholar 

  20. Lahm A, Kreuz PC, El-Tayeh A, Mrosek E, Oberst M, Haberstroh J, Merk H (2007) Loss of zonal organization of articular cartilage after experimental subchondral trauma of the knee joint. Saudi Med J 28(4):649–652

    PubMed  Google Scholar 

  21. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35(10):581–588

    Article  CAS  PubMed  Google Scholar 

  22. Kawamura S, Wakitani S, Kimura T, Maeda A, Caplan AI, Shino K, Ochi T (1998) Articular cartilage repair rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand 69(1):56–62

    Article  CAS  PubMed  Google Scholar 

  23. Johnson DL, Urban WP Jr, Caborn DN, Vanarthos WJ, Carlson CS (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26(3):409–414

    CAS  PubMed  Google Scholar 

  24. Johnson DL, Bealle DP, Brand JC Jr, Nyland J, Caborn DN (2000) The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med 28(2):152–155

    CAS  PubMed  Google Scholar 

  25. Jacobs CR, Eckstein F (1997) Computer simulation of subchondral bone adaptation to mechanical loading in an incongruous joint. Anat Rec 249(3):317–326

    Article  CAS  PubMed  Google Scholar 

  26. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1):16–23

    Article  PubMed  Google Scholar 

  27. Henderson I, Francisco R, Oakes B, Cameron J (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee––a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12(3):209–216

    PubMed  Google Scholar 

  28. Rubin DA, Harner CD, Costello JM (2000) Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. Am J Roentgenol 174(4):1099–1106

    CAS  Google Scholar 

  29. Kijowski R, Stanton P, Fine J, De Smet A (2006) Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 238(3):943–949

    Article  PubMed  Google Scholar 

  30. Felson DT (2005) The sources of pain in knee osteoarthritis. Curr Opin Rheumatol 17(5):624–628

    Article  PubMed  Google Scholar 

  31. Torres L, Dunlop DD, Peterfy C, Guermazi A, Prasad P, Hayes KW, Song J, Cahue S, Chang A, Marshall M, Sharma L (2006) The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage 14(10):1033–1040

    Article  CAS  PubMed  Google Scholar 

  32. Ergun T, Lakadamyali H (2008) The relationship between MRI findings and duration of symptoms in transient osteoporosis of the hip. Acta Orthop Traumatol Turc 42(1):10–15

    Article  PubMed  Google Scholar 

  33. Luoma K, Vehmas T, Gronblad M, Kerttula L, Kaapa E (2008) MRI follow-up of subchondral signal abnormalities in a selected group of chronic low back pain patients. Eur Spine J 17(10):1300–1308

    Article  PubMed  Google Scholar 

  34. Lajeunesse D, Reboul P (2003) Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol 15(5):628–633

    Article  PubMed  Google Scholar 

  35. Aigner N, Petje G, Steinboeck G, Schneider W, Krasny C, Landsiedl F (2001) Treatment of bone-marrow oedema of the talus with the prostacyclin analogue iloprost An MRI-controlled investigation of a new method. J Bone Joint Surg Br 83(6):855–858

    Article  CAS  PubMed  Google Scholar 

  36. Carbone LD, Nevitt MC, Wildy K, Barrow KD, Harris F, Felson D, Peterfy C, Visser M, Harris TB, Wang BW, Kritchevsky SB (2004) The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 50(11):3516–3525

    Article  PubMed  Google Scholar 

  37. Beiser IH, Kanat IO (1990) Subchondral bone drilling: a treatment for cartilage defects. J Foot Surg 29(6):595–601

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemeyer, P., Salzmann, G., Steinwachs, M. et al. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation. Arch Orthop Trauma Surg 130, 977–983 (2010). https://doi.org/10.1007/s00402-010-1049-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-010-1049-8

Keywords

Navigation