Skip to main content
Log in

Recurrent ACVR1 mutations in posterior fossa ependymoma

  • Correspondence
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The raw methylation array data (IDAT format) have been made available for download at the Gene Expression Omnibus (GEO) repository under the accession number GSE196013 (https://www.ncbi.nlm.nih.gov/geo/).

References

  1. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46:451–456. https://doi.org/10.1038/ng.2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carvalho DM, Richardson PJ, Olaciregui N, Stankunaite R, Lavarino C, Molinari V et al (2022) Repurposing vandetanib plus everolimus for the treatment of ACVR1-mutant diffuse intrinsic pontine glioma. Cancer Discov 12:416–431. https://doi.org/10.1158/2159-8290.CD-20-1201

    Article  CAS  PubMed  Google Scholar 

  3. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset PO et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46:462–466. https://doi.org/10.1038/ng.2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gessi M, Capper D, Sahm F, Huang K, von Deimling A, Tippelt S et al (2016) Evidence of H3 K27M mutations in posterior fossa ependymomas. Acta Neuropathol 132:635–637. https://doi.org/10.1007/s00401-016-1608-3

    Article  PubMed  Google Scholar 

  5. Keenan C, Graham RT, Harreld JH, Lucas JT Jr, Finkelstein D, Wheeler D et al (2020) Infratentorial C11orf95-fused gliomas share histologic, immunophenotypic, and molecular characteristics of supratentorial RELA-fused ependymoma. Acta Neuropathol 140:963–965. https://doi.org/10.1007/s00401-020-02238-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mack SC, Pajtler KW, Chavez L, Okonechnikov K, Bertrand KC, Wang X et al (2018) Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature 553:101–105. https://doi.org/10.1038/nature25169

    Article  CAS  PubMed  Google Scholar 

  8. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450. https://doi.org/10.1038/nature13108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B et al (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136:211–226. https://doi.org/10.1007/s00401-018-1877-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743. https://doi.org/10.1016/j.ccell.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525–527. https://doi.org/10.1038/ng1783

    Article  CAS  PubMed  Google Scholar 

  12. Taylor KR, Mackay A, Truffaux N, Butterfield Y, Morozova O, Philippe C et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46:457–461. https://doi.org/10.1038/ng.2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas C, Thierfelder F, Trager M, Soschinski P, Muther M, Edelmann D et al (2021) TERT promoter mutation and chromosome 6 loss define a high-risk subtype of ependymoma evolving from posterior fossa subependymoma. Acta Neuropathol 141:959–970. https://doi.org/10.1007/s00401-021-02300-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450. https://doi.org/10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge all patients and their families. This work utilized the computational resources of the NIH HPC Biowulf cluster (https://hpc.nih.gov/systems/). D.A.S. is supported by the Yuvaan Tiwari Foundation, Morgan Adams Foundation, Panattoni Family Foundation, UCSF Glioblastoma Precision Medicine Program, and UCSF Brain Tumor SPORE (P50 CA097257).

Author information

Authors and Affiliations

Authors

Contributions

All authors provided meaningful contributions to the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Drew Pratt or Kenneth Aldape.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 18 KB)

401_2022_2435_MOESM2_ESM.pdf

Supplementary file2 Supplemental Figure 1. Copy number profiles derived from DNA methylation data. Sample-specific profiles for PF-ACVR1 showed frequent broad chromosomal gains and losses. Proportion-based plots for other PF ependymoma types are shown on the right. Supplemental Figure 2. Age distribution of PF ependymoma types and statistical differences when compared to PF-ACVR1. ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 0.01. Supplemental Figure 3. Representative histologic and immunophenotypic (H3K27me3, EZHIP) features of PF-ACVR1 (cases 1-5, 7) and PFA-ACVR1 (cases 8 and 9) included in this series. Supplemental Figure 4. Kaplan-Meier curves of overall survival and progression-free survival stratified by PF ependymoma tumor type (the exact log rank test is a permutation test based on 100,000 random permutations). Pairwise comparison of the other groups vs. PF-ACVR1 did not reveal significant differences in survival distributions; this may be a result of unbalanced sample sizes in pairwise comparisons with PF-ACVR1. (PDF 2455 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratt, D., Lucas, CH.G., Selvam, P.P. et al. Recurrent ACVR1 mutations in posterior fossa ependymoma. Acta Neuropathol 144, 373–376 (2022). https://doi.org/10.1007/s00401-022-02435-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02435-2

Navigation