Skip to main content

Advertisement

Log in

Proteomic identification of select protein variants of the SNARE interactome associated with cognitive reserve in a large community sample

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Age-related neuropathologies progressively impair cognitive abilities by damaging synaptic function. We aimed to identify key components within the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) machinery associated with cognitive performance and estimate their potential contribution to brain reserve in old age. We used targeted SRM proteomics to quantify amounts of 60 peptides, encoded in 30 different genes, in postmortem specimens of the prefrontal cortex from 1209 participants of two aging studies, with available antemortem cognitive evaluations and postmortem neuropathologic assessments. We found that select (but not all) proteoforms are strongly associated with cognitive function and the burden of Alzheimer’s disease (AD) pathology. Specifically, greater abundance of STX1A (but not other syntaxins), SYT12, full-length SNAP25, and the GABAergic STXBP1 variant were robustly associated with better cognitive performance. By contrast, greater abundance of other presynaptic proteins (e.g., STXBP5 or tomosyn, STX7, or SYN2) showed a negative influence on cognition. Regression models adjusting for demographic and pathologic variables showed that altered levels of these protein species explained 7.7% additional between-subject variance in cognition (more than any individual age-related neuropathology in the model), suggesting that these molecules constitute key elements of brain reserve. Network analyses indicated that those peptides associated with brain reserve, and closest to the SNARE fusogenic activity, showed greater centrality measures and were better connected in the network. Validation assays confirmed the selective loss of the STX1A (but not STX1B) isoform in cognitively impaired cases. In rodent and human brains, STX1A was selectively located at glutamatergic terminals. However, in AD brains, STX1A was redistributed adjacent to neuritic pathology, and markedly expressed in astrocytes. Our study provides strong evidence, indicating that select presynaptic proteins are key in maintaining brain reserve. Compromised ability to sustain expression levels of these proteins may trigger synaptic dysfunction and concomitant cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ando K, Kudo Y, Takahashi M (2005) Negative regulation of neurotransmitter release by calpain: a possible involvement of specific SNAP-25 cleavage. J Neurochem 94:651–658. https://doi.org/10.1111/j.1471-4159.2005.03160.x

    Article  CAS  PubMed  Google Scholar 

  2. Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J et al (2012) Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res 11:3053–3067. https://doi.org/10.1021/pr3001546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barak B, Shvarts-Serebro I, Modai S, Gilam A, Okun E, Michaelson DM et al (2013) Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse models. Transl Psychiatry 3:e304. https://doi.org/10.1038/tp.2013.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA (2018) Religious orders study and rush memory and aging project. J Alzheimer’s Dis 64:S161–S189. https://doi.org/10.3233/JAD-179939

    Article  Google Scholar 

  5. Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS (2012) Overview and findings from the Rush Memory and Aging Project. Curr Alzheimer Res 9:646–663

    Article  CAS  Google Scholar 

  6. Bi D, Wen L, Wu Z, Shen Y (2020) GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.12088

    Article  PubMed  Google Scholar 

  7. Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RLM, Kwakowsky A (2018) The GABAergic system as a therapeutic target for Alzheimer’s disease. J Neurochem 146:649–669. https://doi.org/10.1111/jnc.14345

    Article  CAS  PubMed  Google Scholar 

  8. Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K et al (2020) Fluid biomarkers for synaptic dysfunction and loss. Biomark Insights 15:1177271920950319. https://doi.org/10.1177/1177271920950319

    Article  PubMed  PubMed Central  Google Scholar 

  9. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003. https://doi.org/10.1529/biophysj.103.038422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fà M, Zhang H, Staniszewski A, Saeed F, Shen LW, Schiefer IT et al (2016) Novel selective Calpain 1 inhibitors as potential therapeutics in Alzheimer’s disease. J Alzheimers Dis 49:707–721. https://doi.org/10.3233/JAD-150618

    Article  CAS  PubMed  Google Scholar 

  11. González-Lozano MA, Koopmans F, Sullivan PF, Protze J, Krause G, Verhage M et al (2020) Stitching the synapse: cross-linking mass spectrometry into resolving synaptic protein interactions. Sci Adv 6:eaax5783. https://doi.org/10.1126/sciadv.aax5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grumelli C, Berghuis P, Pozzi D, Caleo M, Antonucci F, Bonanno G et al (2008) Calpain activity contributes to the control of SNAP-25 levels in neurons. Mol Cell Neurosci 39:314–323. https://doi.org/10.1016/j.mcn.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  13. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185. https://doi.org/10.1126/science.1566067

    Article  CAS  Google Scholar 

  14. Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94–108. https://doi.org/10.1038/s41583-018-0113-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heurling K, Ashton NJ, Leuzy A, Zimmer ER, Blennow K, Zetterberg H et al (2019) Synaptic vesicle protein 2A as a potential biomarker in synaptopathies. Mol Cell Neurosci 97:34–42. https://doi.org/10.1016/j.mcn.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  16. Hondius DC, van Nierop P, Li KW, Hoozemans JJM, van der Schors RC, van Haastert ES et al (2016) Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease. Alzheimers Dement 12:654–668. https://doi.org/10.1016/j.jalz.2015.11.002

    Article  PubMed  Google Scholar 

  17. Honer WG, Barr AM, Sawada K, Thornton AE, Morris MC, Leurgans SE et al (2012) Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry 2:e114. https://doi.org/10.1038/tp.2012.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Honer WG, Ramos-Miguel A, Alamri J, Sawada K, Barr AM, Schneider JA et al (2019) The synaptic pathology of cognitive life. Dialogues Clin Neurosci 21:159–167

    Article  Google Scholar 

  19. Jagust W (2018) Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci 19:687–700. https://doi.org/10.1038/s41583-018-0067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson RD, Oliver PL, Davies KE (2008) SNARE proteins and schizophrenia: linking synaptic and neurodevelopmental hypotheses. Acta Biochim Pol 55:619–628

    Article  CAS  Google Scholar 

  21. Kaeser-Woo YJ, Younts TJ, Yang X, Zhou P, Wu D, Castillo PE et al (2013) Synaptotagmin-12 phosphorylation by cAMP-dependent protein kinase is essential for hippocampal mossy fiber LTP. J Neurosci 33:9769–9780. https://doi.org/10.1523/jneurosci.5814-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lanctôt KL, Herrmann N, Mazzotta P, Khan LR, Ingber N (2004) GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry 49:439–453. https://doi.org/10.1177/070674370404900705

    Article  PubMed  Google Scholar 

  23. Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S et al (2016) Synaptopathies: synaptic dysfunction in neurological disorders—a review from students to students. J Neurochem 138:785–805. https://doi.org/10.1111/jnc.13713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci 8:31. https://doi.org/10.3389/fnagi.2016.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang T, Qin T, Xie L, Dolai S, Zhu D, Prentice KJ et al (2017) New roles of Syntaxin-1A in insulin granule exocytosis and replenishment. J Biol Chem 292:2203–2216. https://doi.org/10.1074/jbc.M116.769885

    Article  CAS  PubMed  Google Scholar 

  26. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–939. https://doi.org/10.1212/WNL.34.7.939

    Article  CAS  Google Scholar 

  27. Murari G, Liang DR-S, Ali A, Chan F, Mulder-Heijstra M, Verhoeff NPLG et al (2020) Prefrontal GABA levels correlate with memory in older adults at high risk for Alzheimer’s disease. Cereb Cortex Commun. https://doi.org/10.1093/texcom/tgaa022

    Article  Google Scholar 

  28. Najera K, Fagan BM, Thompson PM (2019) SNAP-25 in major psychiatric disorders: a review. Neuroscience 420:79–85. https://doi.org/10.1016/j.neuroscience.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  29. Ovsepian SV, O’Leary VB, Zaborszky L, Ntziachristos V, Dolly JO (2018) Synaptic vesicle cycle and amyloid β: Biting the hand that feeds. Alzheimers Dement 14:502–513. https://doi.org/10.1016/j.jalz.2018.01.011

    Article  PubMed  Google Scholar 

  30. Ramos-Miguel A, Barr AM, Honer WG (2015) Spines, synapses, and schizophrenia. Biol Psychiatry 78:741–743. https://doi.org/10.1016/j.biopsych.2015.08.035

    Article  PubMed  Google Scholar 

  31. Ramos-Miguel A, Gicas K, Alamri J, Beasley CL, Dwork AJ, Mann JJ et al (2019) Reduced SNAP25 protein fragmentation contributes to SNARE complex dysregulation in schizophrenia postmortem brain. Neuroscience 420:112–128. https://doi.org/10.1016/j.neuroscience.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  32. Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P et al (2015) Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener 10:65. https://doi.org/10.1186/s13024-015-0061-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramos-Miguel A, Honer WG, Boyda HN, Sawada K, Beasley CL, Procyshyn RM et al (2015) Exercise prevents downregulation of hippocampal presynaptic proteins following olanzapine-elicited metabolic dysregulation in rats: distinct roles of inhibitory and excitatory terminals. Neuroscience 301:298–311. https://doi.org/10.1016/j.neuroscience.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  34. Ramos-Miguel A, Jones AA, Sawada K, Barr AM, Bayer TA, Falkai P et al (2018) Frontotemporal dysregulation of the SNARE protein interactome is associated with faster cognitive decline in old age. Neurobiol Dis 114:31–44. https://doi.org/10.1016/j.nbd.2018.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramos-Miguel A, Sawada K, Jones AA, Thornton AE, Barr AM, Leurgans SE et al (2017) Presynaptic proteins complexin-I and complexin-II differentially influence cognitive function in early and late stages of Alzheimer’s disease. Acta Neuropathol 133:395–407. https://doi.org/10.1007/s00401-016-1647-9

    Article  CAS  PubMed  Google Scholar 

  36. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15:665–674. https://doi.org/10.1038/nsmb.1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schneider JA, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 62:1148–1155. https://doi.org/10.1212/01.WNL.0000118211.78503.F5

    Article  CAS  PubMed  Google Scholar 

  38. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418. https://doi.org/10.1016/0092-8674(93)90376-2

    Article  PubMed  Google Scholar 

  39. Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82:756–771. https://doi.org/10.1016/j.neuron.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Srivastava AK, Wang Y, Huang R, Skinner C, Thompson T, Pollard L et al (2016) Human genome meeting 2016: Houston, TX, USA 28 February—2 March 2016. Hum Genomics 10(Suppl 1):12. https://doi.org/10.1186/s40246-016-0063-5

    Article  PubMed Central  Google Scholar 

  41. Stamberger H, Nikanorova M, Willemsen MH, Accorsi P, Angriman M, Baier H et al (2016) STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology 86:954–962. https://doi.org/10.1212/WNL.0000000000002457

    Article  CAS  PubMed  Google Scholar 

  42. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    Article  Google Scholar 

  43. Stern Y (2006) Cognitive Reserve and Alzheimer Disease. Alzheimer Dis Assoc Disord 20

  44. Stern Y, Barnes CA, Grady C, Jones RN, Raz N (2019) Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiol Aging 83:124–129. https://doi.org/10.1016/j.neurobiolaging.2019.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690. https://doi.org/10.1016/j.neuron.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  46. Swanson DA, Steel JM, Valle D (1998) Identification and characterization of the human ortholog of rat STXBP1, a protein implicated in vesicle trafficking and neurotransmitter release. Genomics 48:373–376. https://doi.org/10.1006/geno.1997.5202

    Article  CAS  PubMed  Google Scholar 

  47. Teng FY, Wang Y, Tang BL (2001) The syntaxins. Genome Biol. https://doi.org/10.1186/gb-2001-2-11-reviews3012

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tible M, Sandelius Å, Höglund K, Brinkmalm A, Cognat E, Dumurgier J et al (2020) Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease. Neurology 95:e953–e961. https://doi.org/10.1212/WNL.0000000000010131

    Article  CAS  PubMed  Google Scholar 

  49. Tong LM, Yoon SY, Andrews-Zwilling Y, Yang A, Lin V, Lei H et al (2016) Enhancing GABA signaling during middle adulthood prevents age-dependent GABAergic interneuron decline and learning and memory deficits in ApoE4 mice. J Neurosci 36:2316–2322. https://doi.org/10.1523/JNEUROSCI.3815-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verhage M, Sørensen JB (2020) SNAREopathies: diversity in mechanisms and symptoms. Neuron 107:22–37. https://doi.org/10.1016/j.neuron.2020.05.036

    Article  CAS  PubMed  Google Scholar 

  51. Vico Varela E, Etter G, Williams S (2019) Excitatory-inhibitory imbalance in Alzheimer’s disease and therapeutic significance. Neurobiol Dis 127:605–615. https://doi.org/10.1016/j.nbd.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  52. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772. https://doi.org/10.1016/s0092-8674(00)81404-x

    Article  CAS  PubMed  Google Scholar 

  53. Yizhar O, Matti U, Melamed R, Hagalili Y, Bruns D, Rettig J et al (2004) Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc Natl Acad Sci U S A 101:2578–2583. https://doi.org/10.1073/pnas.0308700100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu L, Petyuk VA, Gaiteri C, Mostafavi S, Young-Pearse T, Shah RC et al (2018) Targeted brain proteomics uncover multiple pathways to Alzheimer’s dementia. Ann Neurol 84:78–88. https://doi.org/10.1002/ana.25266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu L, Tasaki S, Schneider JA, Arfanakis K, Duong DM, Wingo AP et al (2020) Cortical proteins associated with cognitive resilience in community-dwelling older persons. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2020.1807

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to all participants in ROS/MAP, and to the staff in Rush Alzheimer's Disease Center. We also thank Hong-Ying Li and Jenny Yang for their skillful technical assistance. The study was supported by the Spanish Ministry of Science, Innovation and Universities (MCIU) and the European Regional Development Fund (ERDF) (grant RTI2018-094414-A-I00), the Canadian Institutes of Health Research (grant MOP-14037), and the U.S. National Institute of Health (grant U01 AG046152) and Aging (grant K23AG058752). ROS and MAP are collaborative, multidisciplinary, and translational research project funded by the National Institute on Aging (grants R01AG17917, R01AG42210). Dr Ramos-Miguel is a ‘Ramón y Cajal’ Researcher (grant RYC-2016-19282, MCIU-EHU/UPV).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. DAB and JAS conceived ROS and MAP studies. DAB, JAS, and SEL collected and organized demographic and clinical data. JAS conducted neuropathologic assessments. AR-M, AMB, WGH, and VAP selected the protein targets and designed the peptides. VAP and PLDJ performed LC-SRM proteomic assays and provided with quantitative datasets of the peptide. AR-M and VEB carried out validation experiments and immunofluorescence assays. AAJ carried out network analyses. AR-M and WGH compiled all study datasets and performed exploratory analyses. KBC and SEL supervised statistical approaches. AR-M, together with WGH, AAJ, and KBC wrote the first draft of the manuscript. All authors discussed the study results and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alfredo Ramos-Miguel.

Ethics declarations

Conflict of interest

Dr. Honer has received consulting fees or sat on paid advisory boards for: AlphaSights, Guidepoint, In Silico, Translational Life Sciences, Otsuka, Lundbeck, AbbVie, and Newron, and holds shares in Translational Life Sciences, AbCellera, and Eli Lilly. The Organizations cited above had no role on (and therefore did not influence) the design of the present study, the interpretation of results, and/or preparation of the manuscript. All other authors have no financial interest on the reported data and declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 16212 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Miguel, A., Jones, A.A., Petyuk, V.A. et al. Proteomic identification of select protein variants of the SNARE interactome associated with cognitive reserve in a large community sample. Acta Neuropathol 141, 755–770 (2021). https://doi.org/10.1007/s00401-021-02282-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02282-7

Keywords

Navigation