Skip to main content

Advertisement

Log in

Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Abeta deposits and tau pathology were investigated in 24 French patients that died from iatrogenic Creutzfeldt–Jakob disease after exposure to cadaver-derived human growth hormone (c-hGH) in the 1980s. Abeta deposits were found only in one case that had experienced one of the longest incubation periods. Three cases had also intracellular tau accumulation. The analysis of 24 batches of c-hGH, produced between 1974 and 1988, demonstrated for the first time the presence of Abeta and tau contaminants in c-hGH (in 17 and 6 batches, respectively). The incubation of prion disease was shorter in the French patients than the incubation times reported in two previously published British series. We interpreted the low incidence of Abeta in this French series as a consequence of the shorter incubation period observed in France, as compared to that observed in the United Kingdom. This concept suggested that a mean incubation period for the development of detectable Abeta deposits would be longer than 18 years after the first exposure. Moreover, we hypothesized that tau pathology might also be transmissible in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbott A (2016) The red-hot debate about transmissible Alzheimer’s. Nature 531:294–297. https://doi.org/10.1038/531294a

    Article  CAS  PubMed  Google Scholar 

  2. Ando K, Leroy K, Heraud C, Yilmaz Z, Authelet M, Suain V, De Decker R, Brion JP (2011) Accelerated human mutant tau aggregation by knocking out murine tau in a transgenic mouse model. Am J Pathol 178:803–816. https://doi.org/10.1016/j.ajpath.2010.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Audouard E, Houben S, Masaracchia C, Yilmaz Z, Suain V, Authelet M, Dedecker R, Buée L, Boom A, Leroy K, Ando K, Brion J (2016) High molecular weight PHF from Alzheimer brain induce seeding of wild-type mouse tau into an argyrophilic 4R tau pathology in vivo. Am J Pathol 186:2709–2722

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  CAS  PubMed  Google Scholar 

  5. Brown P, Brandel JP, Preece M, Sato T (2006) Iatrogenic Creutzfeldt–Jakob disease: the waning of an era. Neurology 67:389–393

    Article  PubMed  Google Scholar 

  6. Brown P, Preece M, Brandel JP, Sato T, McShane L, Zerr I, Fletcher A, Will RG, Pocchiari M, Cashman NR, d’Aignaux JH, Cervenakova L, Fradkin J, Schonberger LB, Collins SJ (2000) Iatrogenic Creutzfeldt–Jakob disease at the millennium. Neurology 55:1075–1081

    Article  CAS  PubMed  Google Scholar 

  7. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clavaguera F, Hench J, Lavenir I, Schweighauser G, Frank S, Goedert M, Tolnay M (2014) Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol 127:299–301. https://doi.org/10.1007/s00401-013-1231-5

    Article  PubMed  Google Scholar 

  9. de Silva R, Lashley T, Gibb G, Hanger D, Hope A, Reid A, Bandopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol 29:288–302

    Article  PubMed  Google Scholar 

  10. Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330:980–982. https://doi.org/10.1126/science.1194516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fritschi SK, Langer F, Kaeser SA, Maia LF, Portelius E, Pinotsi D, Kaminski CF, Winkler DT, Maetzler W, Keyvani K, Spitzer P, Wiltfang J, Kaminski Schierle GS, Zetterberg H, Staufenbiel M, Jucker M (2014) Highly potent soluble amyloid-beta seeds in human Alzheimer brain but not cerebrospinal fluid. Brain 137:2909–2915. https://doi.org/10.1093/brain/awu255

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gabelle A, Dumurgier J, Vercruysse O, Paquet C, Bombois S, Laplanche JL, Peoc’h K, Schraen S, Buee L, Pasquier F, Hugon J, Touchon J, Lehmann S (2013) Impact of the 2008–2012 French Alzheimer Plan on the use of cerebrospinal fluid biomarkers in research memory center: the PLM Study. J Alzheimers Dis 34:297–305. https://doi.org/10.3233/JAD-121549

    PubMed  Google Scholar 

  13. Giaccone G, Mangieri M, Capobianco R, Limido L, Hauw JJ, Haik S, Fociani P, Bugiani O, Tagliavini F (2008) Tauopathy in human and experimental variant Creutzfeldt–Jakob disease. Neurobiol Aging 29:1864–1873. https://doi.org/10.1016/j.neurobiolaging.2007.04.026

    Article  CAS  PubMed  Google Scholar 

  14. Hashizume M, Takagi J, Kanehira T, Otake K, Mimuro M, Yoshida M, Hashizume Y (2011) Histologic study of age-related change in the posterior pituitary gland focusing on abnormal deposition of tau protein. Pathol Int 61:13–18. https://doi.org/10.1111/j.1440-1827.2010.02610.x

    Article  PubMed  Google Scholar 

  15. Hunter S, Brayne C (2017) Do anti-amyloid beta protein antibody cross reactivities confound Alzheimer disease research? J Negat Results Biomed 16:1. https://doi.org/10.1186/s12952-017-0066-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Irwin DJ, Abrams JY, Schonberger LB, Leschek EW, Mills JL, Lee VM, Trojanowski JQ (2013) Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol 70:462–468. https://doi.org/10.1001/jamaneurol.2013.1933

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS, Rudge P, Collinge J, Brandner S (2015) Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525:247–250

    Article  CAS  PubMed  Google Scholar 

  18. Levavasseur E, Laffont-Proust I, Morain E, Faucheux BA, Privat N, Peoc’h K, Sazdovitch V, Brandel JP, Hauw JJ, Haik S (2008) Regulating factors of PrP glycosylation in Creutzfeldt–Jakob disease—implications for the dissemination and the diagnosis of human prion strains. PLoS ONE 3:e2786

    Article  PubMed  PubMed Central  Google Scholar 

  19. Malia TJ, Teplyakov A, Ernst R, Wu SJ, Lacy ER, Liu X, Vandermeeren M, Mercken M, Luo J, Sweet RW, Gilliland GL (2016) Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8. Proteins 84:427–434. https://doi.org/10.1002/prot.24988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  CAS  PubMed  Google Scholar 

  21. Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 39:669–673. https://doi.org/10.1002/jnr.490390607

    Article  CAS  PubMed  Google Scholar 

  22. Parchi P, de Boni L, Saverioni D, Cohen ML, Ferrer I, Gambetti P, Gelpi E, Giaccone G, Hauw JJ, Hoftberger R, Ironside JW, Jansen C, Kovacs GG, Rozemuller A, Seilhean D, Tagliavini F, Giese A, Kretzschmar HA (2012) Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 124:517–529. https://doi.org/10.1007/s00401-012-1002-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peoc’h K, Levavasseur E, Delmont E, De Simone A, Laffont-Proust I, Privat N, Chebaro Y, Chapuis C, Bedoucha P, Brandel JP, Laquerriere A, Kemeny JL, Hauw JJ, Borg M, Rezaei H, Derreumaux P, Laplanche JL, Haik S (2012) Substitutions at residue 211 in the prion protein drive a switch between CJD and GSS syndrome, a new mechanism governing inherited neurodegenerative disorders. Hum Mol Genet 21:5417–5428

    Article  PubMed  Google Scholar 

  24. Pletnikova O, Rudow GL, Hyde TM, Kleinman JE, Ali SZ, Bharadwaj R, Gangadeen S, Crain BJ, Fowler DR, Rubio AI, Troncoso JC (2015) Alzheimer lesions in the autopsied brains of people 30 to 50 years of age. Cogn Behav Neurol 28:144–152. https://doi.org/10.1097/WNN.0000000000000071

    Article  PubMed  PubMed Central  Google Scholar 

  25. Privat N, Laffont-Proust I, Faucheux BA, Sazdovitch V, Frobert Y, Laplanche JL, Grassi J, Hauw JJ, Haik S (2008) Human prion diseases: from antibody screening to a standardized fast immunodiagnosis using automation. Mod Pathol 21:140–149

    Article  CAS  PubMed  Google Scholar 

  26. Reiniger L, Lukic A, Linehan J, Rudge P, Collinge J, Mead S, Brandner S (2011) Tau, prions and Abeta: the triad of neurodegeneration. Acta Neuropathol 121:5–20. https://doi.org/10.1007/s00401-010-0691-0

    Article  CAS  PubMed  Google Scholar 

  27. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28:595–599. https://doi.org/10.1038/nbt.1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, Jackson RJ, Yull H, Keogh MJ, Wei W, Chinnery PF, Head MW, Ironside JW (2017) Amyloid-beta accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol 134:221–240. https://doi.org/10.1007/s00401-017-1703-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riudavets Mena H, Bouffard JP, Sandberg G, Rushing EJ (2005) Relationship between radiation injury and Alzheimer-related neurodegenerative changes. Clin Neuropathol 24:236–238

    CAS  PubMed  Google Scholar 

  30. Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J, Norsworthy P, Hummerich H, Druyeh R, Wadsworth JD, Brandner S, Hyare H, Mead S, Collinge J (2015) Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 138:3386–3399. https://doi.org/10.1093/brain/awv235

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schultz C, Ghebremedhin E, Braak H, Braak E (1997) Neurofibrillary pathology in the human paraventricular and supraoptic nuclei. Acta Neuropathol 94:99–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Santé Publique France (CNR-ATNC) and by the program “Investissements d’avenir” (ANR-10-IAIHU-06).

Author information

Authors and Affiliations

Authors

Contributions

C.D., V.S., D.S., and S.H. performed neuropathological and biochemical diagnoses and analyzed the data. L.P., J.P. Bra., and S.H. diagnosed and recruited the patients and contributed to the clinical analyses. K.A., Z.Y., and J.P. Bri. performed Gallyas staining, double staining with Gallyas and tau and Western blot analyses of tau. N.P., V.S., C.D., and S.H. performed tau, PrP and Abeta immunohistochemistry and analyzed results. E.A. performed PRNP and ApoE genotyping. E.C., A.M., and S.L. performed the hormone batch study. C.D. and S.H. oversaw the study, analyzed data, and drafted the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Charles Duyckaerts or Stéphane Haïk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duyckaerts, C., Sazdovitch, V., Ando, K. et al. Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology. Acta Neuropathol 135, 201–212 (2018). https://doi.org/10.1007/s00401-017-1791-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1791-x

Keywords

Navigation