Skip to main content

Advertisement

Log in

Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The diagnosis and treatment of diseases involving tau-based pathology such as Alzheimer disease and certain frontotemporal dementias is hampered by the inability to detect pathological forms of tau with sufficient sensitivity, specificity and practicality. In these neurodegenerative diseases, tau accumulates in self-seeding filaments. For example, Pick disease (PiD) is associated with frontotemporal degeneration and accumulation of 3-repeat (3R) tau isoforms in filaments constituting Pick bodies. Exploiting the self-seeding activity of tau deposits, and using a 3R tau fragment as a substrate, we have developed an assay (tau RT-QuIC) that can detect tau seeds in 2 µl aliquots of PiD brain dilutions down to 10−7–10−9. PiD seeding activities were 100-fold higher in frontal and temporal lobes compared to cerebellar cortex. Strikingly, this test was 103- to 105-fold less responsive when seeded with brain containing predominant 4-repeat (4R) tau aggregates from cases of corticobasal degeneration, argyrophilic grain disease, and progressive supranuclear palsy. Alzheimer disease brain, with 3R + 4R tau deposits, also gave much weaker responses than PiD brain. When applied to cerebrospinal fluid samples (5 µl), tau RT-QuIC analyses discriminated PiD from non-PiD cases. These findings demonstrate that abnormal tau aggregates can be detected with high sensitivity and disease-specificity in crude tissue and fluid samples. Accordingly, this tau RT-QuIC assay exemplifies a new approach to diagnosing tauopathies and monitoring therapeutic trials using aggregated tau itself as a biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, Matsubara T, Nakagaki T, Yamanaka H, Shirabe S et al (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17:175–178. doi:10.1038/nm.2294

    Article  CAS  PubMed  Google Scholar 

  2. Bongianni M, Orrù CD, Groveman BR, Sacchetto L, Fiorini M, Tonoli G, Triva G, Capaldi S, Testi S, Ferrari S et al (2017) Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol 74:1–8

    Article  Google Scholar 

  3. Castilla J, Saa P, Morales R, Abid K, Maundrell K, Soto C (2006) Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol 412:3–21

    Article  CAS  PubMed  Google Scholar 

  4. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  CAS  PubMed  Google Scholar 

  5. Colby DW, Zhang Q, Wang S, Groth D, Legname G, Riesner D, Prusiner SB (2007) Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA 104:20914–20919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cramm M, Schmitz M, Karch A, Mitrova E, Kuhn F, Schroeder B, Raeber A, Varges D, Kim YS, Satoh K et al (2016) Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt-Jakob disease. Mol Neurobiol 53:1896–1904. doi:10.1007/s12035-015-9133-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cramm M, Schmitz M, Karch A, Zafar S, Varges D, Mitrova E, Schroeder B, Raeber A, Kuhn F, Zerr I (2015) Characteristic CSF prion seeding efficiency in humans with prion diseases. Mol Neurobiol 51:396–405. doi:10.1007/s12035-014-8709-6

    Article  CAS  PubMed  Google Scholar 

  8. Dani M, Brooks DJ, Edison P (2016) Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging 43:1139–1150. doi:10.1007/s00259-015-3231-2

    Article  CAS  PubMed  Google Scholar 

  9. Dassanayake RP, Orru CD, Hughson AG, Caughey B, Graca T, Zhuang D, Madsen-Bouterse SA, Knowles DP, Schneider DA (2016) Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion. J Gen Virol 97:803–812. doi:10.1099/jgv.0.000367

    Article  CAS  PubMed  Google Scholar 

  10. Dinkel PD, Siddiqua A, Huynh H, Shah M, Margittai M (2011) Variations in filament conformation dictate seeding barrier between three- and four-repeat tau. Biochemistry 50:4330–4336. doi:10.1021/bi2004685

    Article  CAS  PubMed  Google Scholar 

  11. Furman JL, Vaquer-Alicea J, White CL 3rd, Cairns NJ, Nelson PT, Diamond MI (2017) Widespread tau seeding activity at early Braak stages. Acta Neuropathol 133:91–100. doi:10.1007/s00401-016-1644-z

    Article  PubMed  Google Scholar 

  12. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    Article  CAS  PubMed  Google Scholar 

  13. Gold M, Lorenzl S, Stewart AJ, Morimoto BH, Williams DR, Gozes I (2012) Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy. Neuropsychiatr Dis Treat 8:85–93. doi:10.2147/NDT.S12518

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hasegawa M, Watanabe S, Kondo H, Akiyama H, Mann DM, Saito Y, Murayama S (2014) 3R and 4R tau isoforms in paired helical filaments in Alzheimer’s disease. Acta Neuropathol 127:303–305. doi:10.1007/s00401-013-1191-9

    Article  PubMed  Google Scholar 

  15. Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM, Diamond MI (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci USA 111:E4376–E4385. doi:10.1073/pnas.1411649111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu WT, Watts K, Grossman M, Glass J, Lah JJ, Hales C, Shelnutt M, Van Deerlin V, Trojanowski JQ, Levey AI (2013) Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology 81:1945–1952. doi:10.1212/01.wnl.0000436625.63650.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irwin DJ, Brettschneider J, McMillan CT, Cooper F, Olm C, Arnold SE, Van Deerlin VM, Seeley WW, Miller BL, Lee EB et al (2016) Deep clinical and neuropathological phenotyping of Pick disease. Ann Neurol 79:272–287. doi:10.1002/ana.24559

    Article  CAS  PubMed  Google Scholar 

  18. Masujin K, Orru CD, Miyazawa K, Groveman BR, Raymond LD, Hughson AG, Caughey B (2016) Detection of atypical H-type bovine spongiform encephalopathy and discrimination of bovine prion strains by real-time quaking-induced conversion. J Clin Microbiol 54:676–686. doi:10.1128/JCM.02731-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McGuire LI, Peden AH, Orru CD, Wilham JM, Appleford NE, Mallinson G, Andrews M, Head MW, Caughey B, Will RG et al (2012) RT-QuIC analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 72:278–285

    Article  PubMed  PubMed Central  Google Scholar 

  20. McGuire LI, Poleggi A, Poggiolini I, Suardi S, Grznarova K, Shi S, de Vil B, Sarros S, Satoh K, Cheng K et al (2016) Cerebrospinal fluid real-time quaking-induced conversion is a robust and reliable test for sporadic Creutzfeldt-Jakob disease: an international study. Ann Neurol 80:160–165. doi:10.1002/ana.24679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer V, Dinkel PD, Rickman Hager E, Margittai M (2014) Amplification of Tau fibrils from minute quantities of seeds. Biochemistry 53:5804–5809. doi:10.1021/bi501050g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morozova OA, March ZM, Robinson AS, Colby DW (2013) Conformational features of tau fibrils from Alzheimer’s disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry 52:6960–6967. doi:10.1021/bi400866w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murrell J, Ghetti B, Cochran E, Macias-Islas MA, Medina L, Varpetian A, Cummings JL, Mendez MF, Kawas C, Chui H et al (2006) The A431E mutation in PSEN1 causing familial Alzheimer’s disease originating in Jalisco State, Mexico: an additional fifteen families. Neurogenetics 7:277–279. doi:10.1007/s10048-006-0053-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orru CD, Bongianni M, Tonoli G, Ferrari S, Hughson AG, Groveman BR, Fiorini M, Pocchiari M, Monaco S, Caughey B et al (2014) A test for Creutzfeldt-Jakob disease using nasal brushings. N Engl J Med 371:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orru CD, Favole A, Corona C, Mazza M, Manca M, Groveman BR, Hughson AG, Acutis PL, Caramelli M, Zanusso G et al (2015) Detection and discrimination of classical and atypical L-type bovine spongiform encephalopathy by real-time quaking-induced conversion. J Clin Microbiol 53:1115–1120. doi:10.1128/jcm.02906-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orru CD, Groveman BR, Hughson AG, Zanusso G, Coulthart MB, Caughey B (2015) Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. MBio 6:e02451–14. doi:10.1128/mBio.02451-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orru CD, Groveman BR, Raymond LD, Hughson AG, Nonno R, Zou W, Ghetti B, Gambetti P, Caughey B (2015) Bank vole prion protein as an apparently universal substrate for RT-QuIC-based detection and discrimination of prion strains. PLoS Path 11:e1004983. doi:10.1371/journal.ppat.1004983

    Article  Google Scholar 

  28. Orru CD, Wilham JM, Vascellari S, Hughson AG, Caughey B (2012) New generation QuIC assays for prion seeding activity. Prion 6:147–152. doi:10.4161/pri.19430

    Article  CAS  PubMed  Google Scholar 

  29. Schmitz M, Cramm M, Llorens F, Muller-Cramm D, Collins S, Atarashi R, Satoh K, Orru CD, Groveman BR, Zafar S et al (2016) The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc 11:2233–2242. doi:10.1038/nprot.2016.120

    Article  CAS  PubMed  Google Scholar 

  30. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622. doi:10.1016/S1474-4422(13)70090-5

    Article  CAS  PubMed  Google Scholar 

  31. Spillantini MG, Goedert M, Crowther RA, Murrell JR, Farlow MR, Ghetti B (1997) Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci USA 94:4113–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  33. Takeda S, Commins C, DeVos SL, Nobuhara CK, Wegmann S, Roe AD, Costantino I, Fan Z, Nicholls SB, Sherman AE et al (2016) Seed-competent HMW tau species accumulates in the cerebrospinal fluid of Alzheimer’s disease mouse model and human patients. Ann Neurol 80:355–367. doi:10.1002/ana.24716

    Article  CAS  PubMed  Google Scholar 

  34. Taniguchi-Watanabe S, Arai T, Kametani F, Nonaka T, Masuda-Suzukake M, Tarutani A, Murayama S, Saito Y, Arima K, Yoshida M et al (2016) Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol 131:267–280. doi:10.1007/s00401-015-1503-3

    Article  CAS  PubMed  Google Scholar 

  35. Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4:29–37. doi:10.1038/82868

    Article  CAS  PubMed  Google Scholar 

  36. Wilham JM, Orrú CD, Bessen RA, Atarashi R, Sano K, Race B, Meade-White KD, Taubner LM, Timmes A, Caughey B (2010) Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Path 6:e1001217. doi:10.1371/journal.ppat.1001217

    Article  Google Scholar 

  37. Williams DR (2006) Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J 36:652–660. doi:10.1111/j.1445-5994.2006.01153.x

    Article  CAS  PubMed  Google Scholar 

  38. Zanusso G, Bongianni M, Caughey B (2014) A test for Creutzfeldt-Jakob disease using nasal brushings. N Engl J Med 371:1842–1843. doi:10.1056/NEJMc1410732

    Article  PubMed  Google Scholar 

  39. Zanusso G, Monaco S, Pocchiari M, Caughey B (2016) Advanced tests for early and accurate diagnosis of Creutzfeldt-Jakob disease. Nat Rev Neurol 12:325–333. doi:10.1038/nrneurol.2016.65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lynne Raymond for helpful discussions about protein purification and training in the use of chromatography equipment. We thank David Mead for running MALDI mass spectra for this study and Dr. Vinod Nair for assistance with the electron microscopy. We thank Rose Marie Richardson and Francine Epperson for technical help and research coordination, which has been essential in the process of obtaining and preparing tissue for the best possible diagnoses. We thank Drs. Brent Race and Mr. Andrew Hughson for critical review of this manuscript. This work was supported in part by the Intramural Research Program if the NIAID and the Neuropathology Core, Indiana Alzheimer Disease Center P30 AG010133 and by the Japan Society for the Promotion of Science (JSPS) Fellowship for Japanese Biomedical and Behavioral Researchers at NIH to ES. We are grateful to Dr. Geidy Serrano and the Banner Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona for the provision of brain tissue and cerebrospinal fluid. The Brain and Body Donation Program is supported by the National Institute on Aging (P30 AG19610 Arizona Alzheimer’s Disease Core Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease Consortium) and Prescott Family Initiative of the Michael J. Fox Foundation for Parkinson’s Research.

Author contributions

Coordinated project: ES and BC. Performed experiments: ES (all types), AK (electron microscopy). Provided human brain samples and associated clinical data: BG, AO and GZ. Provided tau KO mouse brain tissue and lysates thereof: JF and MD. Prepared the manuscript: BC and ES. Edited the manuscript: BC, ES, GZ, BG, AK, JF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byron Caughey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saijo, E., Ghetti, B., Zanusso, G. et al. Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol 133, 751–765 (2017). https://doi.org/10.1007/s00401-017-1692-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1692-z

Keywords

Navigation