Skip to main content
Log in

Astrocyte pathology in Alexander disease causes a marked inflammatory environment

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Astrocytes and microglia are commonly involved in a wide variety of CNS pathologies. However, they are typically involved in a secondary response in which many cell types are affected simultaneously and therefore it is difficult to know their contributions to the pathology. Here, we show that pathological astrocytes in a mouse model of Alexander disease (AxD; GFAP Tg;Gfap +/R236H) cause a pronounced immune response. We have studied the inflammatory response in the hippocampus and spinal cord of these mice and have found marked microglial activation, which follows that of astrocytes in a spatial pathological progression, as shown by increased levels of Iba1 and microglial cell (Iba1+) density. RNA sequencing and subsequent gene ontology (GO) analysis revealed that a majority of the most upregulated genes in GFAP Tg;Gfap +/R236H mice are directly associated with immune function and that cytokine and chemokine GO attributes represent nearly a third of the total immune attributes. Cytokine and chemokine analysis showed CXCL10 and CCL2 to be the most and earliest increased molecules, showing concentrations as high as EAE or stroke models. CXCL10 was localized exclusively to astrocytes while CCL2 was also present in microglia. Despite the high levels of CXCL10 and CCL2, T cell infiltration was mild and no B cells were found. Thus, mutations in GFAP are sufficient to trigger a profound inflammatory response. The cellular stress caused by the accumulation of GFAP likely leads to the production of inflammatory molecules and microglial activation. Examination of human AxD CNS tissues also revealed microglial activation and T cell infiltrates. Therefore, the inflammatory environment may play an important role in producing the neuronal dysfunction and seizures of AxD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alexander WS (1949) Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 72:373–381 (373 pl)

    Article  CAS  PubMed  Google Scholar 

  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi:10.1186/gb-2010-11-10-r106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP (2009) Next generation software for functional trend analysis. Bioinformatics (Oxford, England) 25:3043–3044. doi:10.1093/bioinformatics/btp498

    Article  CAS  Google Scholar 

  4. Biber K, Dijkstra I, Trebst C, De Groot CJ, Ransohoff RM, Boddeke HW (2002) Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience 112:487–497

    Article  CAS  PubMed  Google Scholar 

  5. Che X, Ye W, Panga L, Wu DC, Yang GY (2001) Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res 902:171–177

    Article  CAS  PubMed  Google Scholar 

  6. Cheng W, Zhao Q, Xi Y, Li C, Xu Y, Wang L, Niu X, Wang Z, Chen G (2015) IFN-beta inhibits T cells accumulation in the central nervous system by reducing the expression and activity of chemokines in experimental autoimmune encephalomyelitis. Mol Immunol 64:152–162. doi:10.1016/j.molimm.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  7. Cho J, Nelson TE, Bajova H, Gruol DL (2009) Chronic CXCL10 alters neuronal properties in rat hippocampal culture. J Neuroimmunol 207:92–100. doi:10.1016/j.jneuroim.2008.12.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B et al (2015) CXCL10 triggers early microglial activation in the cuprizone model. J Immunol (Baltim, Md: 1950) 194:3400–3413. doi:10.4049/jimmunol.1401459

    Article  CAS  Google Scholar 

  9. dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J (2005) CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis–an intravital microscopy study. J Neuroimmunol 162:122–129. doi:10.1016/j.jneuroim.2005.01.020

    Article  PubMed  Google Scholar 

  10. Dos Santos AC, Roffe E, Arantes RM, Juliano L, Pesquero JL, Pesquero JB, Bader M, Teixeira MM, Carvalho-Tavares J (2008) Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. J Neuroinflammation 5:49. doi:10.1186/1742-2094-5-49

    Article  PubMed Central  PubMed  Google Scholar 

  11. Goebel HH, Bode G, Caesar R, Kohlschutter A (1981) Bulbar palsy with Rosenthal fiber formation in the medulla of a 15-year-old girl. Localized form of Alexander’s disease? Neuropediatrics 12:382–391. doi:10.1055/s-2008-1059669

    Article  CAS  PubMed  Google Scholar 

  12. Goodarzi H, Elemento O, Tavazoie S (2009) Revealing global regulatory perturbations across human cancers. Mol Cell 36:900–911. doi:10.1016/j.molcel.2009.11.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gosselin RD, Varela C, Banisadr G, Mechighel P, Rostene W, Kitabgi P, Melik-Parsadaniantz S (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 95:1023–1034. doi:10.1111/j.1471-4159.2005.03431.x

    Article  CAS  PubMed  Google Scholar 

  14. Hagemann TL, Connor JX, Messing A (2006) Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 26:11162–11173. doi:10.1523/jneurosci.3260-06.2006

    Article  CAS  PubMed  Google Scholar 

  15. Hagemann TL, Gaeta SA, Smith MA, Johnson DA, Johnson JA, Messing A (2005) Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet 14:2443–2458. doi:10.1093/hmg/ddi248

    Article  CAS  PubMed  Google Scholar 

  16. Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78

    Article  CAS  PubMed  Google Scholar 

  17. Jeon S, Jha MK, Ock J, Seo J, Jin M, Cho H, Lee WH, Suk K (2013) Role of lipocalin-2-chemokine axis in the development of neuropathic pain following peripheral nerve injury. J Biol Chem 288:24116–24127. doi:10.1074/jbc.M113.454140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Jiang L, Newman M, Saporta S, Chen N, Sanberg C, Sanberg PR, Willing AE (2008) MIP-1alpha and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Current neurovascular research 5:118–124

    Article  CAS  PubMed  Google Scholar 

  19. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. doi:10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  20. Klein EA, Anzil AP (1994) Prominent white matter cavitation in an infant with Alexander’s disease. Clin Neuropathol 13:31–38

    CAS  PubMed  Google Scholar 

  21. Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K (2011) Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 286:43855–43870. doi:10.1074/jbc.M111.299248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Majumder S, Zhou LZ, Chaturvedi P, Babcock G, Aras S, Ransohoff RM (1998) p48/STAT-1alpha-containing complexes play a predominant role in induction of IFN-gamma-inducible protein, 10 kDa (IP-10) by IFN-gamma alone or in synergy with TNF-alpha. J Immunol (Baltim, Md: 1950) 161:4736–4744

    CAS  Google Scholar 

  23. Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32:5017–5023. doi:10.1523/JNEUROSCI.5384-11.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, Brenner M (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152:391–398

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Nelson TE, Gruol DL (2004) The chemokine CXCL10 modulates excitatory activity and intracellular calcium signaling in cultured hippocampal neurons. J Neuroimmunol 156:74–87. doi:10.1016/j.jneuroim.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Llamas C, Lopez-Bigas N (2011) Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS One 6:e19541. doi:10.1371/journal.pone.0019541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Phares TW, Stohlman SA, Hinton DR, Bergmann CC (2013) Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol 87:3382–3392. doi:10.1128/jvi.03307-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, Hartka T, Sokohl A, Schiffmann R, Gordish-Dressman H et al (2011) GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology 77:1287–1294. doi:10.1212/WNL.0b013e3182309f72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Investig 122:1164–1171. doi:10.1172/jci58644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R et al (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24:8500–8509. doi:10.1523/jneurosci.2451-04.2004

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez D, Gauthier F, Bertini E, Bugiani M, Brenner M, N’Guyen S, Goizet C, Gelot A, Surtees R, Pedespan JM et al (2001) Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am J Hum Genet 69:1134–1140. doi:10.1086/323799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Russo LS Jr, Aron A, Anderson PJ (1976) Alexander’s disease: a report and reappraisal. Neurology 26:607–614

    Article  PubMed  Google Scholar 

  33. Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 8:315. doi:10.3389/fnins.2014.00315

    Article  PubMed Central  PubMed  Google Scholar 

  34. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20. doi:10.1016/j.brainresbull.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  35. Sofroniew MV (2015) Astrogliosis. Cold Spring Herb Perspect Biol 7:a020420. doi:10.1101/cshperspect.a020420

    Article  Google Scholar 

  36. Sosunov AA, Guilfoyle E, Wu X, McKhann GM 2nd, Goldman JE (2013) Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in Alexander disease. J Neurosci 33:7439–7450. doi:10.1523/jneurosci.4506-12.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tang G, Xu Z, Goldman JE (2006) Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem 281:38634–38643. doi:10.1074/jbc.M604942200

    Article  CAS  PubMed  Google Scholar 

  38. Tang G, Yue Z, Talloczy Z, Goldman JE (2008) Adaptive autophagy in Alexander disease-affected astrocytes. Autophagy 4:701–703

    Article  CAS  PubMed  Google Scholar 

  39. Tang G, Yue Z, Talloczy Z, Hagemann T, Cho W, Messing A, Sulzer DL, Goldman JE (2008) Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum Mol Genet 17:1540–1555. doi:10.1093/hmg/ddn042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Thompson WL, Van Eldik LJ (2009) Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkB and MAPK dependent pathways in rat astrocytes [corrected]. Brain Res 1287:47–57. doi:10.1016/j.brainres.2009.06.081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Tian R, Wu X, Hagemann TL, Sosunov AA, Messing A, McKhann GM, Goldman JE (2010) Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol 69:335–345. doi:10.1097/NEN.0b013e3181d3cb52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Towfighi J, Young R, Sassani J, Ramer J, Horoupian DS (1983) Alexander’s disease: further light-, and electron-microscopic observations. Acta Neuropathol 61:36–42

    Article  CAS  PubMed  Google Scholar 

  43. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics (Oxford, England) 25:1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  Google Scholar 

  44. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069. doi:10.1523/jneurosci.4158-11.2011

    Article  CAS  PubMed  Google Scholar 

  45. Vezzani A, Viviani B (2014) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. doi:10.1016/j.neuropharm.2014.10.027

    PubMed  Google Scholar 

  46. Zhou Y, Tang H, Liu J, Dong J, Xiong H (2011) Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices. J Neurochem 116:406–414. doi:10.1111/j.1471-4159.2010.07121.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Peter Sims, Jessica Tome-Garcia and George Vlad for their technical support and Amanda Sierra, Eileen Guilfoyle and Alexander Sosunov for their critical comments. This project has been partly funded by the IKERBASQUE Foundation, Basque Government and by NIH Grant P01NS042803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Goldman.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2015_1469_MOESM1_ESM.tif

Supplementary material 1: Fig. S1 Bar graph representing cytokine and chemokine mRNA and protein fold differences (log2) between wt and GFAP Tg;Gfap +/R236H mice hippocampi at 4 weeks. a) Chemokines that are significantly increased in both mRNA and protein level. b) IL-16 is the only cytokine that shows significant protein increase with no mRNA level difference. c) Highly expressed cytokines and chemokines that do not show significant protein increase. Black triangle: Mean values of wt and GFAP Tg;Gfap +/R236H represented by the fold difference are not significantly different (TIFF 574 kb)

401_2015_1469_MOESM2_ESM.tif

Supplementary material 2: Fig. S2 A fraction of CXCL10 + cells in the 4-week-old GFAP Tg;Gfap +/R236H hippocampus are CCL2 + . All CCL2 + astrocytes are CXCL10 + (yellow arrowheads). Scale bar: 50 µm (TIFF 4662 kb)

401_2015_1469_MOESM3_ESM.docx

Supplementary material 3: Table S1 Total list of GOs considered as immune related and itemized by subcategories. This presents a list of all of the GOs that we defined as “immune-related” (DOCX 23 kb)

401_2015_1469_MOESM4_ESM.docx

Supplementary material 4: Table S2 Top 100 most increased transcripts at 4 weeks in the hippocampus of GFAP Tg;Gfap +/R236H mice relative to wt. Genes, gene products, fold increases, and adjusted p values are given. All p values are significant at a p < 0.05 (DOCX 19 kb)

401_2015_1469_MOESM5_ESM.xlsx

Supplementary material 5: Table S3 Excel file of entire DESeq data from RNASeq analysis, listed by fold-increase of AxD mouse over wt mouse (XLSX 1912 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olabarria, M., Putilina, M., Riemer, E.C. et al. Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathol 130, 469–486 (2015). https://doi.org/10.1007/s00401-015-1469-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1469-1

Keywords

Navigation