Skip to main content

Advertisement

Log in

TREM2 regulates microglial cell activation in response to demyelination in vivo

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2−/−) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2−/− microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2−/− microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Archambault AS, Sim J, McCandless EE, Klein RS, Russell JH (2006) Region-specific regulation of inflammation and pathogenesis in experimental autoimmune encephalomyelitis. J Neuroimmunol 181:122–132. doi:10.1016/j.jneuroim.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  2. Bayer TA (2013) Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2013.03.007

    PubMed  Google Scholar 

  3. Benitez BA, Cruchaga C (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1567–1568. doi:10.1056/NEJMc1306509#SA4

    PubMed  Google Scholar 

  4. Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S (2009) Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 132:1078–1092. doi:10.1093/brain/awn331

    Article  PubMed  Google Scholar 

  5. Borroni B, Ferrari F, Galimberti D, Nacmias B, Barone C, Bagnoli S, Fenoglio C, Piaceri I, Archetti S, Bonvicini C et al (2014) Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol Aging 35(934):e937. doi:10.1016/j.neurobiolaging.2013.09.017

    Google Scholar 

  6. Brody DL, Mac Donald C, Kessens CC, Yuede C, Parsadanian M, Spinner M, Kim E, Schwetye KE, Holtzman DM, Bayly PV (2007) Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J Neurotrauma 24:657–673. doi:10.1089/neu.2006.0011

    Article  PubMed Central  PubMed  Google Scholar 

  7. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. doi:10.1038/nn.3599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J, Simpson E, Appel SH et al (2014) TREM2 variant p. R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71:449–453. doi:10.1001/jamaneurol.2013.6237

    Article  PubMed  Google Scholar 

  9. Colonna M (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3:445–453. doi:10.1038/nri1106

    Article  CAS  PubMed  Google Scholar 

  10. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  11. Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE (2003) Pattern recognition by TREM-2: binding of anionic ligands. J Immunol 171:594–599

    Article  CAS  PubMed  Google Scholar 

  12. Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727. doi:10.1002/glia.22298

    Article  PubMed  Google Scholar 

  13. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397. doi:10.1016/j.neuron.2014.02.040

    Article  CAS  PubMed  Google Scholar 

  14. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6:e26317. doi:10.1371/journal.pone.0026317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399

    Article  PubMed  Google Scholar 

  16. Ford JW, McVicar DW (2009) TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 21:38–46. doi:10.1016/j.coi.2009.01.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56:1438–1447. doi:10.1002/glia.20710

    Article  PubMed  Google Scholar 

  18. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Geno Biol 5:R80. doi:10.1186/gb-2004-5-10-r80

    Article  Google Scholar 

  19. Gong H, Dong W, Rostad SW, Marcovina SM, Albers JJ, Brunzell JD, Vuletic S (2013) Lipoprotein lipase (LPL) is associated with neurite pathology and its levels are markedly reduced in the dentate gyrus of Alzheimer’s disease brains. J Histochem Cytochem 61:857–868. doi:10.1369/0022155413505601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Grady RM, Wozniak DF, Ohlemiller KK, Sanes JR (2006) Cerebellar synaptic defects and abnormal motor behavior in mice lacking alpha- and beta-dystrobrevin. J Neurosci 26:2841–2851. doi:10.1523/JNEUROSCI.4823-05.2006

    Article  CAS  PubMed  Google Scholar 

  21. Greter M, Merad M (2013) Regulation of microglia development and homeostasis. Glia 61:121–127. doi:10.1002/glia.22408

    Article  PubMed  Google Scholar 

  22. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S et al (2012) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. doi:10.1056/NEJMoa1211851

    Article  PubMed Central  PubMed  Google Scholar 

  23. Guerreiro RJ, Lohmann E, Bras JM, Gibbs JR, Rohrer JD, Gurunlian N, Dursun B, Bilgic B, Hanagasi H, Gurvit H et al (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 70:78–84

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177:2051–2055

    Article  CAS  PubMed  Google Scholar 

  25. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519. doi:10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  26. Heppner FL, Roth K, Nitsch R, Hailer NP (1998) Vitamin E induces ramification and downregulation of adhesion molecules in cultured microglial cells. Glia 22:180–188

    Article  CAS  PubMed  Google Scholar 

  27. Hickman SE, El Khoury J (2014) TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol 88:495–498. doi:10.1016/j.bcp.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  28. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. doi:10.1038/nn.3554

    Article  CAS  PubMed  Google Scholar 

  29. Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49

    Article  CAS  PubMed  Google Scholar 

  30. Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109(4): 1144–1156

  31. Ihara M, Polvikoski TM, Hall R, Slade JY, Perry RH, Oakley AE, Englund E, O’Brien JT, Ince PG, Kalaria RN (2010) Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies. Acta Neuropathol 119:579–589. doi:10.1007/s00401-009-0635-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ito H, Hamerman JA (2012) TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur J Immunol 42:176–185. doi:10.1002/eji.201141679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D, Matsushima GK, Ting JP (2010) The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 30:15811–15820. doi:10.1523/JNEUROSCI.4088-10.2010

    Article  CAS  PubMed  Google Scholar 

  34. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, Norton JB, Hsu S, Harari O, Cai Y et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet. doi:10.1093/hmg/ddu277

    PubMed Central  Google Scholar 

  35. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ et al (2012) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116. doi:10.1056/NEJMoa1211103

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280. doi:10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  37. Kiernan JA (1984) Chromoxane cyanine R. II. Staining of animal tissues by the dye and its iron complexes. J Microsc 134:25–39

    Article  CAS  PubMed  Google Scholar 

  38. Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri Fet al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Trans Med 6: 243–286

  39. Klunemann HH, Ridha BH, Magy L, Wherrett JR, Hemelsoet DM, Keen RW, De Bleecker JL, Rossor MN, Marienhagen J, Klein HE et al (2005) The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology 64:1502–1507

    Article  CAS  PubMed  Google Scholar 

  40. Lassmann H, Ammerer HP, Jurecka W, Kulnig W (1978) Ultrastructural sequence of myelin degradation. II. Wallerian degeneration in the rat femoral nerve. Acta Neuropathol 44:103–109

    Article  CAS  PubMed  Google Scholar 

  41. Lewis ND, Hill JD, Juchem KW, Stefanopoulos DE, Modis LK (2014) RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J Neuroimmunol 277: 26–38

  42. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R et al (2013) Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 210:157–172. doi:10.1084/jem.20120412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ma Y, Bao J, Zhao X, Shen H, Lv J, Ma S, Zhang X, Li Z, Wang S, Wang Q et al (2013) Activated cyclin-dependent kinase 5 promotes microglial phagocytosis of fibrillar beta-amyloid by up-regulating lipoprotein lipase expression. Mol Cell Proteomics 12:2833–2844. doi:10.1074/mcp.M112.026864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Matsuo A, Lee GC, Terai K, Takami K, Hickey WF, McGeer EG, McGeer PL (1997) Unmasking of an unusual myelin basic protein epitope during the process of myelin degeneration in humans: a potential mechanism for the generation of autoantigens. Am J Pathol 150:1253–1266

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116

    Article  CAS  PubMed  Google Scholar 

  46. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. doi:10.1126/science.1197623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. McMahon EJ, Suzuki K, Matsushima GK (2002) Peripheral macrophage recruitment in cuprizone-induced CNS demyelination despite an intact blood-brain barrier. J Neuroimmunol 130:32–45

    Article  CAS  PubMed  Google Scholar 

  48. Melchior B, Garcia AE, Hsiung BK, Lo KM, Doose JM, Thrash JC, Stalder AK, Staufenbiel M, Neumann H, Carson MJ (2010) Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease. ASN Neuro 2:e00037. doi:10.1042/AN20100010

    Article  PubMed Central  PubMed  Google Scholar 

  49. Mizuno T, Doi Y, Mizoguchi H, Jin S, Noda M, Sonobe Y, Takeuchi H, Suzumura A (2011) Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-beta neurotoxicity. Am J Pathol 179: 2016–2027

  50. N’Diaye EN, Branda CS, Branda SS, Nevarez L, Colonna M, Lowell C, Hamerman JA, Seaman WE (2009) TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol 184(2): 215–223

  51. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed  Google Scholar 

  52. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132: 288–295

  53. Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184: 92–9

  54. Nicholson AM, Baker MC, Finch NA, Rutherford NJ, Wider C, Graff-Radford NR, Nelson PT, Clark HB, Wszolek ZK, Dickson DW et al (2013) CSF1R mutations link POLD and HDLS as a single disease entity. Neurology 80:1033–1040. doi:10.1212/WNL.0b013e31828726a7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Nishitsuji K, Hosono T, Uchimura K, Michikawa M (2011) Lipoprotein lipase is a novel amyloid beta (Abeta)-binding protein that promotes glycosaminoglycan-dependent cellular uptake of Abeta in astrocytes. J Biol Chem 286:6393–6401. doi:10.1074/jbc.M110.172106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Norkute A, Hieble A, Braun A, Johann S, Clarner T, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 87:1343–1355. doi:10.1002/jnr.21946

    Article  CAS  PubMed  Google Scholar 

  57. Nyren R, Chang CL, Lindstrom P, Barmina A, Vorrsjo E, Ali Y, Juntti-Berggren L, Bensadoun A, Young SG, Olivecrona T et al (2012) Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency. BMC Physiol 12:14. doi:10.1186/1472-6793-12-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60:306–321. doi:10.1002/glia.21266

    Article  PubMed  Google Scholar 

  59. Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Faccio R, Ross FP, Teitelbaum SL, Takayanagi H et al (2012) TREM2 and beta-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol 188:2612–2621. doi:10.4049/jimmunol.1102836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, Tassi I, Takai T, Stanley SL, Miller M et al (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol 10:734–743. doi:10.1038/ni.1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R, Salmaggi A et al (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J, Naismith RT, Panina-Bordignon P, Passini N (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131: 3081–3091

  63. Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37:1290–1301

    Article  CAS  PubMed  Google Scholar 

  64. Pottier C, Wallon D, Rousseau S, Rovelet-Lecrux A, Richard AC, Rollin-Sillaire A, Frebourg T, Campion D, Hannequin D (2013) TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis 35:45–49. doi:10.3233/JAD-122311

    CAS  PubMed  Google Scholar 

  65. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, De Jesus-Hernandez M et al (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205. doi:10.1038/ng.1027

    Article  CAS  Google Scholar 

  66. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi:10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  67. Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH et al (2013) TREM2 in neurodegeneration: evidence for association of the p. R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 8:19. doi:10.1186/1750-1326-8-19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Reitz C, Mayeux R (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1564–1565. doi:10.1056/NEJMc1306509#SA1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Remington LT, Babcock AA, Zehntner SP, Owens T (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170:1713–1724. doi:10.2353/ajpath.2007.060783

    Article  PubMed Central  PubMed  Google Scholar 

  70. Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, Smyth GK (2006) Empirical array quality weights in the analysis of microarray data. BMC bioinformatics 7:261. doi:10.1186/1471-2105-7-261

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ruiz A, Dols-Icardo O, Bullido MJ, Pastor P, Rodriguez-Rodriguez E, de Lopez Munain A, de Pancorbo MM, Perez-Tur J, Alvarez V, Antonell A et al (2014) Assessing the role of the TREM2 p. R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35(444):e441–e444. doi:10.1016/j.neurobiolaging.2013.08.011

    Google Scholar 

  72. Schmid CD, Melchior B, Masek K, Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG, Carson MJ (2009) Differential gene expression in LPS/IFNgamma activated microglia and macrophages: in vitro versus in vivo. J Neurochem 109 (Suppl 1): 117-125

  73. Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann H, Witte OW, Frahm C (2013) Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS ONE 8:e52982. doi:10.1371/journal.pone.0052982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgartner W, Stangel M (2013) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136:147–167. doi:10.1093/brain/aws262

    Article  PubMed  Google Scholar 

  75. Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F, Trebst C, Stangel M (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172:1053–1061. doi:10.2353/ajpath.2008.070850

    Article  PubMed Central  PubMed  Google Scholar 

  76. Stanley ER, Chitu V (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect 6(6): a021857

  77. Streit WJ, Xue QS (2014) Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 29C:93–96. doi:10.1016/j.coi.2014.05.005

    Article  Google Scholar 

  78. Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4:e124

    Article  PubMed Central  PubMed  Google Scholar 

  79. Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177:3520–3524

    Article  CAS  PubMed  Google Scholar 

  81. Ulrich JD, Finn MB, Wang Y, Shen A, Mahan TE, Jiang H, Stewart FR, Piccio L, Colonna M, Holtzman DM (2014) Altered microglial response to Abeta plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener 9:20. doi:10.1186/1750-1326-9-20

    Article  PubMed Central  PubMed  Google Scholar 

  82. Voss EV, Skuljec J, Gudi V, Skripuletz T, Pul R, Trebst C, Stangel M (2012) Characterisation of microglia during de- and remyelination: can they create a repair promoting environment? Neurobiol Dis 45:519–528. doi:10.1016/j.nbd.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  83. Wettenhall JM, Simpson KM, Satterley K, Smyth GK (2006) affylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics 22:897–899. doi:10.1093/bioinformatics/btl025

    Article  CAS  PubMed  Google Scholar 

  84. Wozniak DF, Hartman RE, Boyle MP, Vogt SK, Brooks AR, Tenkova T, Young C, Olney JW, Muglia LJ (2004) Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol Dis 17:403–414. doi:10.1016/j.nbd.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  85. Xie M, Tobin JE, Budde MD, Chen CI, Trinkaus K, Cross AH, McDaniel DP, Song SK, Armstrong RC (2010) Rostrocaudal analysis of corpus callosum demyelination and axon damage across disease stages refines diffusion tensor imaging correlations with pathological features. J Neuropathol Exp Neurol 69:704–716. doi:10.1097/NEN.0b013e3181e3de90

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Gregory F. Wu, Jessica Williams and Erika D. Koval for critical discussions, advice and/or for reading the manuscript; Dr. Marco Colonna for providing TREM2−/− mice; Mike Ramsbottom for technical assistance. This work was supported by grants from Fondazione Italiana Sclerosi Multipla (FISM) [2009/R/33 to L.P.], the National Multiple Sclerosis Society (NMSS, JF 2144A2/1 to L.P.) and the Dana Foundation “Program in the Neuroimmunology and Brain Infections and Cancer” (to L.P.). C.C. is a FISM fellow (2012/B/1). Histological support came from NIH PO1 NS059560 Core B to RSK. L.P. is a Harry Weaver Neuroscience Scholar of the NMSS. A.H·C. was supported by the Manny and Rosalyn Rosenthal Dr. John L. Trotter Chair in Neuroimmunology from Barnes-Jewish Hospital Foundation. GTAC is supported by NCI Cancer Center Support Grant #P30 CA91842, ICTS/CTSA Grant# UL1 TR000448 from the National Center for Research Resources (NCRR), and NIH Roadmap for Medical Research. This publication is solely the responsibility of the authors and does not necessarily represent the official view of NCRR or NIH.

Conflict of interest

The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karel Otero or Laura Piccio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2015_1388_MOESM1_ESM.tif

Supplementary Fig. 1 Immuno-EM images indicating the presence of compacted or non-compacted myelin debris in WT and TREM2−/− mice at 3,000× (left column) and 15,000× (right column). Boxes indicate region of interest shown in higher magnification images on the right. Microglia were labeled with Iba and are marked with asterisks. WT mice at 4 weeks of cuprizone treatment contain small amounts of non-compacted myelin outside of microglia (white arrows) and inside microglia (black arrows). After 12 weeks of cuprizone treatment, the non-compacted myelin has been cleared, and remyelination can be seen by the presence of axons wrapped by compacted myelin (Ax). TREM2−/− mice at 4 weeks of treatment contain large amounts of non-compacted myelin outside of microglia (white arrows). After 12 weeks of treatment, TREM2−/− mice still contain significant amounts of non-compacted myelin outside of microglia (white arrows) and inside of microglia (black arrows). (TIFF 38348 kb)

401_2015_1388_MOESM2_ESM.tif

Supplementary Fig. 2 Defect in lipid metabolism in TREM2−/− mice. (a) Gene expression data for the 12 weeks on CPZ were uploaded to IPA for network analysis. Genes with a logarithmic fold change (TREM2−/− vs. WT mice) ≥ 1 and adjusted P value ≤ 0.05 were included in the analysis. The “Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry” was the top network that was significantly altered in TREM2−/− compared to WT (score of 46) and it is presented in a. Red objects denote proteins that had increased gene expression, green objects denote proteins that had decreased gene expression in TREM2−/− compared to WT mice. Solid connecting lines imply direct relationship between proteins; dotted lines imply indirect interactions. (b) Analysis with the Ingenuity downstream effect analysis identified the cellular concentration of fatty acid as the biological function that is affected given the observed gene expression change. Red objects denote proteins with increased gene expression, green objects denote proteins with decreased gene expression in TREM2−/− vs. WT. Orange or yellow arrows denote when the change is consistent or inconsistent with the downstream effect, respectively. (c) LPL gene expression quantification by qRT-PCR in purified WT and TREM2−/− microglia from naïve mice (n = 3/group) or mice after 4 weeks on CPZ (from n = 6 WT and 8 TREM2−/− mice). (d) LPL protein expression quantification by IHC in the CC of naïve WT and TREM2−/− mice or after 4 weeks on CPZ (n = 4/group). Values are given as mean ± SD. * P ≤ 0.05; **P ≤ 0.001 using Mann–Whitney test (TIFF 23230 kb)

Supplementary material 3 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantoni, C., Bollman, B., Licastro, D. et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol 129, 429–447 (2015). https://doi.org/10.1007/s00401-015-1388-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1388-1

Keywords

Navigation