Skip to main content

Advertisement

Log in

Are cases with tau pathology occurring in the absence of Aβ deposits part of the AD-related pathological process?

  • Commentary
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  2. Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31

    Article  CAS  PubMed  Google Scholar 

  3. Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181

    Article  PubMed  Google Scholar 

  4. Braak H, Del Tredici K (2015) Neuroanatomy and pathology of sporadic Alzheimer’s disease. Advances in Anatomy Embryology and Cell Biology, Springer http://www.springer.com/biomed/neuroscience/book/978-3-319-12678-4

  5. Braak H, Thal DR, Ghebremedhin E et al (2011) Stages of the pathological process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    Article  CAS  PubMed  Google Scholar 

  6. Braak H, Zetterberg H, Del Tredici K et al (2013) Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol 126:631–641

    Article  CAS  PubMed  Google Scholar 

  7. Chételat G, Fouquet M (2013) Neuroimaging biomarkers for Alzheimer’s disease in asymptomatic APOEe carriers. Rev Neurol 169:729–736

    Article  PubMed  Google Scholar 

  8. Crary JF, Trojanowski JQ, Schneider JA et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. doi:10.1007/s00401-014-1349-0

    PubMed  Google Scholar 

  9. Ferrer I (2012) Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol 97:38–51

    Article  PubMed  Google Scholar 

  10. Fodero-Tavoletti MT, Furumoto S, Taylor L et al (2014) Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimers Res Ther 6:11–21

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ghebremedhin E, Schultz C, Braak E et al (1998) High frequency of apolipoprotein E ε4 allele in young individuals with very mild Alzheimer’s disease-related neurofibrillary changes. Exp Neurol 153:152–155

    Article  CAS  PubMed  Google Scholar 

  12. Goedert M, Falcon B, Clavaguera F et al (2014) Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr Neurol Neurosci Rep 14:495

    Article  PubMed  Google Scholar 

  13. Jagust WJ, Landau SM, Alzheimer’s Disease Neuroimaging Initiative (2012) Apolipoprotein E, not fibrillary β-amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci 32:18227–18233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kuninaka N, Kawaguchi M, Ogawa M et al (2014) Simplification of the Gallyas silver method. Neuropathology. doi:10.1111/neup.12144

    PubMed  Google Scholar 

  15. Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Okamura N, Furumoto S, Harada R et al (2013) Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med 54:1420–1427

    Article  CAS  PubMed  Google Scholar 

  17. Perani D (2014) FDG-PET and amyloid-PET imaging: the diverging paths. Curr Opin Neurol 27:405–413

    Article  CAS  PubMed  Google Scholar 

  18. Tago T, Furumoto S, Okamura N et al (2014) Synthesis and preliminary evaluation of 2-arylhydroxyquinoline derivatives for tau imaging. J Label Comp Radiopharm 57:18–24

    Article  CAS  Google Scholar 

  19. Tauber C, Beaufils E, Hommel C et al (2013) Brain [18F]FDDNP binding and glucose metabolism in advanced elderly healthy subjects and Alzheimer’s disease patients. J Alzheimers Dis 36:311–320

    CAS  PubMed  Google Scholar 

  20. Thal DR, Rüb U, Orantes M et al (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  21. Uchihara T (2007) Silver diagnosis in neuropathology: principles, practice and revised interpretation. Acta Neuropathol 11:483–499

    Article  Google Scholar 

  22. Villemagne VL, Furumoto S, Fodero-Tavoletti MT et al (2014) In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41:816–826

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Simone Feldengut (Tables) and Mr. David Ewert (graphics) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Braak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braak, H., Del Tredici, K. Are cases with tau pathology occurring in the absence of Aβ deposits part of the AD-related pathological process?. Acta Neuropathol 128, 767–772 (2014). https://doi.org/10.1007/s00401-014-1356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1356-1

Keywords

Navigation