Skip to main content
Log in

Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Medulloblastoma is a malignant embryonal brain tumor with highly variable outcome. In order to study the biology of this tumor and to perform preclinical treatment studies, a lot of effort has been put into the generation of appropriate mouse models. The usage of these models, however, has become debatable with the advances in human medulloblastoma subgrouping. This study brings together multiple relevant mouse models and matches genetic alterations and gene expression data of 140 murine tumors with 423 human medulloblastomas in a global way. Using AGDEX analysis and k-means clustering, we show that the Blbp-cre::Ctnnb1(ex3)Fl/+ Trp53 Fl/Fl mouse model fits well to human WNT medulloblastoma, and that, among various Myc- or Mycn-based mouse medulloblastomas, tumors in Glt1-tTA::TRE-MYCN/Luc mice proved to be most specific for human group 3 medulloblastoma. None of the analyzed models displayed a significant match to group 4 tumors. Intriguingly, mice with Ptch1 or Smo mutations selectively modeled SHH medulloblastomas of adulthood, although such mutations occur in all human age groups. We therefore suggest that the infantile or adult gene expression pattern of SHH MBs are not solely determined by specific mutations. This is supported by the observation that human medulloblastomas with PTCH1 mutations displayed more similarities to PTCH1 wild-type tumors of the same age group than to PTCH1-mutated tumors of the other age group. Together, we provide novel insights into previously unrecognized specificity of distinct models and suggest these findings as a solid basis to choose the appropriate model for preclinical studies on medulloblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atkinson SP, Koch CM, Clelland GK et al (2008) Epigenetic marking prepares the human HOXA cluster for activation during differentiation of pluripotent cells. Stem Cells 26:1174–1185. doi:10.1634/stemcells.2007-0497

    Article  CAS  PubMed  Google Scholar 

  2. Bocker MT, Tuorto F, Raddatz G et al (2012) Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nat Commun 3:818. doi:10.1038/ncomms1826

    Article  PubMed Central  PubMed  Google Scholar 

  3. Brugieres L, Remenieras A, Pierron G et al (2012) High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J Clin Oncol 30:2087–2093. doi:10.1200/JCO.2011.38.7258

    Article  CAS  PubMed  Google Scholar 

  4. Di Vinci A, Brigati C, Casciano I et al (2012) HOXA7, 9, and 10 are methylation targets associated with aggressive behavior in meningiomas. Transl Res 160:355–362. doi:10.1016/j.trsl.2012.05.007

    Article  PubMed  Google Scholar 

  5. Di Vinci A, Casciano I, Marasco E et al (2012) Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome. J Cancer Res Clin Oncol 138:35–47. doi:10.1007/s00432-011-1070-5

    Article  PubMed  Google Scholar 

  6. Fattet S, Haberler C, Legoix P et al (2009) Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218:86–94. doi:10.1002/path.2514

    Article  CAS  PubMed  Google Scholar 

  7. Favier B, Dolle P (1997) Developmental functions of mammalian Hox genes. Mol Hum Reprod 3:115–131

    Article  CAS  PubMed  Google Scholar 

  8. Gibson P, Tong Y, Robinson G et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099. doi:10.1038/nature09587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113

    Article  CAS  PubMed  Google Scholar 

  10. Grammel D, Warmuth-Metz M, von Bueren AO et al (2012) Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol 123:601–614. doi:10.1007/s00401-012-0961-0

    Article  CAS  PubMed  Google Scholar 

  11. Hershko AY, Kafri T, Fainsod A, Razin A (2003) Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 302:65–72

    Article  CAS  PubMed  Google Scholar 

  12. Johnson RA, Wright KD, Poppleton H et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466:632–636. doi:10.1038/nature09173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127. doi:10.1093/biostatistics/kxj037

    Article  PubMed  Google Scholar 

  14. Jones DT, Jäger N, Kool M et al (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488:100–105. doi:10.1038/nature11284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kawauchi D, Robinson G, Uziel T et al (2012) A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21:168–180. doi:10.1016/j.ccr.2011.12.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim JJ, Gill PS, Rotin L et al (2011) Suppressor of fused controls mid-hindbrain patterning and cerebellar morphogenesis via GLI3 repressor. J Neurosci 31:1825–1836. doi:10.1523/JNEUROSCI.2166-10.201131/5/1825

    Article  CAS  PubMed  Google Scholar 

  17. Kool M, Korshunov A, Remke M et al (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484. doi:10.1007/s00401-012-0958-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kool M, Koster J, Bunt J et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3:e3088. doi:10.1371/journal.pone.0003088

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kool M, Jäger N, Northcott P et al (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened-inhibition. Cancer Cell 25(3):393–405. doi:10.1016/j.ccr.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  20. Krivtsov AV, Feng Z, Lemieux ME et al (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14:355–368. doi:10.1016/j.ccr.2008.10.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lattin JE, Schroder K, Su AI et al (2008) Expression analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome Res 4:5. doi:10.1186/1745-7580-4-5

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lau J, Schmidt C, Markant SL, Taylor MD, Wechsler-Reya RJ, Weiss WA (2012) Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Childs Nerv Syst 28:521–532. doi:10.1007/s00381-012-1704-1

    Article  PubMed Central  PubMed  Google Scholar 

  23. Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331. doi:10.1101/gr.101907.109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee Y, Kawagoe R, Sasai K et al (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26:6442–6447. doi:10.1038/sj.onc.1210467

    Article  CAS  PubMed  Google Scholar 

  25. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883. doi:10.1093/bioinformatics/bts034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lepourcelet M, Tou L, Cai L et al (2005) Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development 132:415–427

    Article  CAS  PubMed  Google Scholar 

  27. Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27:1157–1158. doi:10.1093/bioinformatics/btr076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed Central  PubMed  Google Scholar 

  29. Li P, Du F, Yuelling LW et al (2013) A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nat Neurosci 16:1737–1744. doi:10.1038/nn.3553

    Article  CAS  PubMed  Google Scholar 

  30. Mao J, Ligon KL, Rakhlin EY et al (2006) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 66:10171–10178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Northcott PA, Hielscher T, Dubuc A et al (2011) Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol (Berl) 122:231–240

    Article  Google Scholar 

  32. Northcott PA, Jones DT, Kool M et al (2012) Medulloblastomics: the end of the beginning. Nat Rev Cancer 12:818–834. doi:10.1038/nrc3410nrc3410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Northcott PA, Korshunov A, Witt H et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414

    Article  PubMed  Google Scholar 

  34. Northcott PA, Shih DJ, Peacock J et al (2012) Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488:49–56. doi:10.1038/nature11327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Novak P, Jensen T, Oshiro MM et al (2006) Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 66:10664–10670. doi:10.1158/0008-5472.CAN-06-2761

    Article  CAS  PubMed  Google Scholar 

  36. Oliver TG, Read TA, Kessler JD et al (2005) Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132:2425–2439

    Article  CAS  PubMed  Google Scholar 

  37. Pei Y, Moore CE, Wang J et al (2012) An animal model of MYC-driven medulloblastoma. Cancer Cell 21:155–167. doi:10.1016/j.ccr.2011.12.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pounds S, Gao CL, Johnson RA et al (2011) A procedure to statistically evaluate agreement of differential expression for cross-species genomics. Bioinformatics 27:2098–2103. doi:10.1093/bioinformatics/btr362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Robinson G, Parker M, Kranenburg TA et al (2012) Novel mutations target distinct subgroups of medulloblastoma. Nature 488:43–48. doi:10.1038/nature11213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rutkowski S, von Hoff K, Emser A et al (2010) Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol 28:4961–4968

    Article  PubMed  Google Scholar 

  41. Schüller U, Heine VM, Mao J et al (2008) Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14:123–134. doi:10.1016/j.ccr.2008.07.005

    Article  PubMed Central  PubMed  Google Scholar 

  42. Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y (2002) HOX gene clusters are hotspots of de novo methylation in CpG islands of human lung adenocarcinomas. Oncogene 21:3659–3662. doi:10.1038/sj.onc.1205453

    Article  CAS  PubMed  Google Scholar 

  43. Shirasawa S, Arata A, Onimaru H et al (2000) Rnx deficiency results in congenital central hypoventilation. Nat Genet 24:287–290. doi:10.1038/73516

    Article  CAS  PubMed  Google Scholar 

  44. Strathdee G, Holyoake TL, Sim A et al (2007) Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin Cancer Res 13:5048–5055. doi:10.1158/1078-0432.CCR-07-0919

    Article  CAS  PubMed  Google Scholar 

  45. Swartling FJ, Grimmer MR, Hackett CS et al (2010) Pleiotropic role for MYCN in medulloblastoma. Genes Dev 24:1059–1072. doi:10.1101/gad.190751024/10/1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Swartling FJ, Savov V, Persson AI et al (2012) Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 21:601–613. doi:10.1016/j.ccr.2012.04.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472. doi:10.1007/s00401-011-0922-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Uziel T, Zindy F, Xie S et al (2005) The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes Dev 19:2656–2667. doi:10.1101/gad.1368605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. doi:10.1093/nar/gkq603gkq603

    Article  PubMed Central  PubMed  Google Scholar 

  50. Wefers AK, Warmuth-Metz M, Pöschl J et al (2014) Subgroup-specific localization of human medulloblastoma based on pre-operative MRI. Acta Neuropathol 127:931–933. doi:10.1007/s00401-014-1271-5

    Article  PubMed  Google Scholar 

  51. Wetmore C, Eberhart DE, Curran T (2001) Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61:513–516

    CAS  PubMed  Google Scholar 

  52. Yang ZJ, Ellis T, Markant SL et al (2008) Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145. doi:10.1016/j.ccr.2008.07.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zhukova N, Ramaswamy V, Remke M et al (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 31:2927–2935. doi:10.1200/JCO.2012.48.5052

    Article  PubMed  Google Scholar 

  54. Zindy F, Uziel T, Ayrault O et al (2007) Genetic alterations in mouse medulloblastomas and generation of tumors de novo from primary cerebellar granule neuron precursors. Cancer Res 67:2676–2684. doi:10.1158/0008-5472.CAN-06-3418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Y. Lee and Dr. P. McKinnon (both Memphis, TN, USA) for providing microarray data. We are further indebted to Dr. Dr. M. Dorostkar (Munich, Germany) and all members of the Schüller group for very fruitful discussions. This work was supported by grants from the Deutsche Krebshilfe (Max-Eder junior research program to U.S.), the Wilhelm Sander Foundation (to U.S.), the Else-Kröner-Fresenius Foundation (to U.S.) and the Friedrich Baur Foundation (to J. P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schüller.

Additional information

M. Kool and U. Schüller are co-senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pöschl, J., Stark, S., Neumann, P. et al. Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathol 128, 123–136 (2014). https://doi.org/10.1007/s00401-014-1297-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1297-8

Keywords

Navigation