Skip to main content

Advertisement

Log in

Soluble pathological tau in the entorhinal cortex leads to presynaptic deficits in an early Alzheimer’s disease model

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neurofibrillary tangles (NFTs), a hallmark of Alzheimer’s disease, are intracellular silver and thioflavin S-staining aggregates that emerge from earlier accumulation of phospho-tau in the soma. Whether soluble misfolded but nonfibrillar tau disrupts neuronal function is unclear. Here we investigate if soluble pathological tau, specifically directed to the entorhinal cortex (EC), can cause behavioral or synaptic deficits. We studied rTgTauEC transgenic mice, in which P301L mutant human tau overexpressed primarily in the EC leads to the development of tau pathology, but only rare NFT at 16 months of age. We show that the early tau lesions are associated with nearly normal performance in contextual fear conditioning, a hippocampal-related behavior task, but more robust changes in neuronal system activation as marked by Arc induction and clear electrophysiological defects in perforant pathway synaptic plasticity. Electrophysiological changes were likely due to a presynaptic deficit and changes in probability of neurotransmitter release. The data presented here support the hypothesis that misfolded and hyperphosphorylated tau can impair neuronal function within the entorhinal-hippocampal network, even prior to frank NFT formation and overt neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bellone C, Luscher C (2005) mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci 21(5):1280–1288. doi:10.1111/j.1460-9568.2005.03979.x

    Article  PubMed  Google Scholar 

  2. Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE 6(12):e26860. doi:10.1371/journal.pone.0026860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2–3):216–223. doi:10.1016/j.bbadis.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  5. Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271(51):32789–32795

    Article  CAS  PubMed  Google Scholar 

  6. Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101(41):14966–14971. doi:10.1073/pnas.0406283101

    Article  CAS  PubMed  Google Scholar 

  7. Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Corsi M, Orzi F, Conquet F (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4(9):873–874. doi:10.1038/nn0901-873nn0901-873

    Article  CAS  PubMed  Google Scholar 

  8. Czerniawski J, Ree F, Chia C, Ramamoorthi K, Kumata Y, Otto TA (2011) The importance of having Arc: expression of the immediate-early gene Arc is required for hippocampus-dependent fear conditioning and blocked by NMDA receptor antagonism. J Neurosci 31(31):11200–11207. doi:10.1523/JNEUROSCI.2211-11.2011

    Article  CAS  PubMed  Google Scholar 

  9. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73(4):685–697. doi:10.1016/j.neuron.2011.11.033

    Article  PubMed Central  PubMed  Google Scholar 

  10. Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1996) Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol 491(Pt 1):163–176

    CAS  PubMed  Google Scholar 

  11. Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18(16):6147–6162

    CAS  PubMed  Google Scholar 

  12. Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493(7432):327–337. doi:10.1038/nature11860

    Article  CAS  PubMed  Google Scholar 

  13. Elmqvist D, Quastel DM (1965) A quantitative study of end-plate potentials in isolated human muscle. J Physiol 178(3):505–529

    CAS  PubMed  Google Scholar 

  14. Fox LM, William CM, Adamowicz DH, Pitstick R, Carlson GA, Spires-Jones TL, Hyman BT (2011) Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model. J Neuropathol Exp Neurol 70(7):588–595. doi:10.1097/NEN.0b013e318220a658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19(1):1–8

    CAS  PubMed  Google Scholar 

  16. Ghasemzadeh MB, Permenter LK, Lake R, Worley PF, Kalivas PW (2003) Homer1 proteins and AMPA receptors modulate cocaine-induced behavioural plasticity. Eur J Neurosci 18(6):1645–1651. doi:2880

    Article  PubMed  Google Scholar 

  17. Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267(1):564–569

    CAS  PubMed  Google Scholar 

  18. Harris JA, Koyama A, Maeda S, Ho K, Devidze N, Dubal DB, Yu GQ, Masliah E, Mucke L (2012) Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS ONE 7(9):e45881. doi:10.1371/journal.pone.0045881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hasegawa M, Arai T, Akiyama H, Nonaka T, Mori H, Hashimoto T, Yamazaki M, Oyanagi K (2007) TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130(Pt 5):1386–1394. doi:10.1093/brain/awm065

    Article  PubMed  Google Scholar 

  20. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667):1168–1170

    Article  CAS  PubMed  Google Scholar 

  21. Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931

    Article  CAS  PubMed  Google Scholar 

  22. Jiang L, Sun S, Nedergaard M, Kang J (2000) Paired-pulse modulation at individual GABAergic synapses in rat hippocampus. J Physiol 523(Pt 2):425–439 PHY_0118 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Jicha GA, Bowser R, Kazam IG, Davies P (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 48(2):128–132. doi:10.1002/(SICI)1097-4547(19970415)48:2<128:AID-JNR5>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  24. Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195(2):481–492

    CAS  PubMed  Google Scholar 

  25. Ke YD, Dramiga J, Schutz U, Kril JJ, Ittner LM, Schroder H, Gotz J (2012) Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimer’s and Pick’s disease. PLoS ONE 7(4):e35678. doi:10.1371/journal.pone.0035678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kim JH, Vezina P (1998) Metabotropic glutamate receptors are necessary for sensitization by amphetamine. Neuro Report 9(3):403–406

    Google Scholar 

  27. Kirischuk S, Clements JD, Grantyn R (2002) Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. J Physiol 543(Pt 1):99–116 PHY_021576 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP, Hyman BT, Spires-Jones TL (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179(4):2071–2082. doi:10.1016/j.ajpath.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  29. Kopeikina KJ, Hyman BT, Spires-Jones TL (2012) Soluble forms of tau are toxic in Alzheimer’s disease. Trans Neurosci 3(3):223–233. doi:10.2478/s13380-012-0032-y

    Article  Google Scholar 

  30. Ksiezak-Reding H, Davies P, Yen SH (1988) Alz 50, a monoclonal antibody to Alzheimer’s disease antigen, cross-reacts with tau proteins from bovine and normal human brain. J Biol Chem 263(17):7943–7947

    CAS  PubMed  Google Scholar 

  31. Kwon HB, Castillo PE (2008) Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron 57(1):108–120. doi:10.1016/j.neuron.2007.11.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lee D, Lee KH, Ho WK, Lee SH (2007) Target cell-specific involvement of presynaptic mitochondria in post-tetanic potentiation at hippocampal mossy fiber synapses. J Neurosci 27(50):13603–13613. doi:10.1523/JNEUROSCI.3985-07.2007

    Article  CAS  PubMed  Google Scholar 

  33. Lee JS, Kim MH, Ho WK, Lee SH (2008) Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of Held synapse. J Neurosci 28(32):7945–7953. doi:10.1523/JNEUROSCI.2165-08.2008

    Article  CAS  PubMed  Google Scholar 

  34. Lee SH, Kim MH, Lee JY, Lee D, Park KH, Ho WK (2007) Na +/Ca2 + exchange and Ca2 + homeostasis in axon terminals of mammalian central neurons. Ann N Y Acad Sci 1099:396–412. doi:1099/1/39610.1196/annals.1387.011

    Article  CAS  PubMed  Google Scholar 

  35. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7(2):e31302. doi:10.1371/journal.pone.0031302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70(4):1451–1459

    CAS  PubMed  Google Scholar 

  37. Mennerick S, Zorumski CF (1995) Presynaptic influence on the time course of fast excitatory synaptic currents in cultured hippocampal cells. J Neurosci 15(4):3178–3192

    CAS  PubMed  Google Scholar 

  38. O’Donovan MJ, Rinzel J (1997) Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends Neurosci 20(10):431–433 S0166-2236(97)01124-7 [pii]

    Article  PubMed  Google Scholar 

  39. Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 39(6):669–673. doi:10.1002/jnr.490390607

    Article  CAS  PubMed  Google Scholar 

  40. Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bosl MR, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52(3):437–444. doi:10.1016/j.neuron.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  41. Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29(34):10741–10749. doi:10.1523/JNEUROSCI.1065-09.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394. doi:10.1038/embor.2013.15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Prescott SA (1998) Interactions between depression and facilitation within neural networks: updating the dual-process theory of plasticity. Learn Mem 5(6):446–466

    CAS  PubMed  Google Scholar 

  44. Quintanilla RA, Matthews-Roberson TA, Dolan PJ, Johnson GV (2009) Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: implications for the pathogenesis of Alzheimer disease. J Biol Chem 284(28):18754–18766. doi:10.1074/jbc.M808908200

    Article  CAS  PubMed  Google Scholar 

  45. Rocher AB, Crimins JL, Amatrudo JM, Kinson MS, Todd-Brown MA, Lewis J, Luebke JI (2010) Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp Neurol 223(2):385–393. doi:10.1016/j.expneurol.2009.07.029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sakaba T, Neher E (2001) Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J Neurosci 21(2):462–476. doi:21/2/462

    CAS  PubMed  Google Scholar 

  47. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481. doi:10.1126/science.1113694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stevens CF, Tsujimoto T (1995) Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sci USA 92(3):846–849

    Article  CAS  PubMed  Google Scholar 

  49. Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21(2):415–424 S0896-6273(00)80550-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279. doi:10.3233/JAD-2010-100339

    PubMed  Google Scholar 

  51. Szumlinski KK, Toda S, Middaugh LD, Worley PF, Kalivas PW (2003) Evidence for a relationship between Group 1 mGluR hypofunction and increased cocaine and ethanol sensitivity in Homer2 null mutant mice. Ann N Y Acad Sci 1003:468–471

    Article  PubMed  Google Scholar 

  52. Tagawa Y, Kanold PO, Majdan M, Shatz CJ (2005) Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat Neurosci 8(3):380–388. doi:10.1038/nn1410

    Article  CAS  PubMed  Google Scholar 

  53. Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23(7):305–312 S0166-2236(00)01580-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the Rhesus monkey. Science 175(4029):1471–1473

    Article  PubMed  Google Scholar 

  55. Wang LY, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394(6691):384–388. doi:10.1038/28645

    Article  CAS  PubMed  Google Scholar 

  56. Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM (2007) Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc Natl Acad Sci USA 104(24):10252–10257. doi:10.1073/pnas.0703676104

    Article  CAS  PubMed  Google Scholar 

  57. Weaver CL, Espinoza M, Kress Y, Davies P (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging 21(5):719–727 S0197-4580(00)00157-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Wilcox KS, Dichter MA (1994) Paired pulse depression in cultured hippocampal neurons is due to a presynaptic mechanism independent of GABAB autoreceptor activation. J Neurosci 14(3 Pt 2):1775–1788

    CAS  PubMed  Google Scholar 

  59. Xiong ZQ, Stringer JL (1997) Effects of felbamate, gabapentin and lamotrigine on seizure parameters and excitability in the rat hippocampus. Epilepsy Res 27(3):187–194 S0920-1211(97)00022-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  60. Xu J, He L, Wu LG (2007) Role of Ca(2+) channels in short-term synaptic plasticity. Curr Opin Neurobiol 17(3):352–359. doi:10.1016/j.conb.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  61. Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow EM, Diamond MI, Lee VM, Holtzman DM (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31(37):13110–13117. doi:10.1523/JNEUROSCI.2569-11.2011

    Article  CAS  PubMed  Google Scholar 

  62. Yasuda M, Mayford MR (2006) CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory. Neuron 50(2):309–318. doi:10.1016/j.neuron.2006.03.035

    Article  CAS  PubMed  Google Scholar 

  63. Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950. doi:10.1523/JNEUROSCI.2357-10.2010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants: R00AG033670, R21AG03885, R01AG026249-07, 5T32AG00022222, American Health Assistance Foundation, the Glenn Foundation, The Alzheimer’s Association Zenith Award ZEN-09-132524, Alzheimer’s Research UK, and a portion of the behavioral work was supported by the Harvard NeuroDiscovery Center. We thank Mark Mayford for providing neuropsin-tTA mice, and Peter Davies for providing tau antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley T. Hyman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 24190 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polydoro, M., Dzhala, V.I., Pooler, A.M. et al. Soluble pathological tau in the entorhinal cortex leads to presynaptic deficits in an early Alzheimer’s disease model. Acta Neuropathol 127, 257–270 (2014). https://doi.org/10.1007/s00401-013-1215-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1215-5

Keywords

Navigation