Skip to main content

Advertisement

Log in

HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The hypothalamus–pituitary–adrenal (HPA) axis is activated in most, but not all multiple sclerosis (MS) patients and is implicated in disease progression and comorbid mood disorders. In this post-mortem study, we investigated how HPA axis activity in MS is related to disease severity, neurodegeneration, depression, lesion pathology and gene expression in normal-appearing white matter (NAWM). In 42 MS patients, HPA axis activity was determined by measuring cortisol in cerebrospinal fluid (CSF) and counting hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons. Degree of neurodegeneration was based on levels of glutamate, tau and neurofilament in CSF. Duration of MS and time to EDSS 6 served as indicators of disease severity. Glutamate levels correlated with numbers of CRH-expressing neurons, most prominently in primary progressive MS patients, suggesting that neurodegeneration is a strong determinant of HPA axis activity. High cortisol levels were associated with slower disease progression, especially in females with secondary progressive MS. Patients with low cortisol levels had greater numbers of active lesions and tended towards having less remyelinated plaques than patients with high cortisol levels. Interestingly, NAWM of patients with high cortisol levels displayed elevated expression of glucocorticoid-responsive genes, such as CD163, and decreased expression of pro-inflammatory genes, such as tumor necrosis factor-α. Thus, HPA axis hyperactivity in MS coincides with low inflammation and/or high neurodegeneration, and may impact on lesion pathology and molecular mechanisms in NAWM and thereby be of great importance for suppression of disease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baranzini SE, Srinivasan R, Khankhanian P, Okuda DT, Nelson SJ, Matthews PM, Hauser SL, Oksenberg JR, Pelletier D (2010) Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. Brain 133(9):2603–2611

    Article  PubMed  Google Scholar 

  2. Bergamaschi R (2007) Prognostic factors in multiple sclerosis. Int Rev Neurobiol 79(0074–7742 (Linking)):423–447

    Article  PubMed  Google Scholar 

  3. Bergmeyer HU (1974) Methods of enzymatic analysis. Academic Press, New York

    Google Scholar 

  4. Bhavsar PK, Sukkar MB, Khorasani N, Lee K-Y, Chung KF (2008) Glucocorticoid suppression of CX3CL1 (fractalkine) by reduced gene promoter recruitment of NF-κB. FASEB J 22(6):1807–1816

    Article  PubMed  CAS  Google Scholar 

  5. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123(Pt 6):1174–1183

    Article  PubMed  Google Scholar 

  6. Butzkueven H, Zhang J-G, Soilu-Hanninen M et al (2002) LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 8(6):613–619

    Article  PubMed  CAS  Google Scholar 

  7. Cao W, Yang Y, Wang Z et al (2011) Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 35(2):273–284

    Article  PubMed  CAS  Google Scholar 

  8. Cardona AE, Pioro EP, Sasse ME et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    Article  PubMed  CAS  Google Scholar 

  9. Chesnokova V, Melmed S (2000) Leukemia inhibitory factor mediates the hypothalamic pituitary adrenal axis response to inflammation. Endocrinology 141(11):4032–4040

    Article  PubMed  CAS  Google Scholar 

  10. Deverman BE, Patterson PH (2012) Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination. J Neurosci 32(6):2100–2109

    Article  PubMed  CAS  Google Scholar 

  11. Erkut ZA, Endert E, Huitinga I, Swaab DF (2002) Cortisol is increased in postmortem cerebrospinal fluid of multiple sclerosis patients: relationship with cytokines and sepsis. Mult Scler 8(3):229–236

    Article  PubMed  CAS  Google Scholar 

  12. Erkut ZA, Klooker T, Endert E, Huitinga I, Swaab DF (2004) Stress of dying is not suppressed by high-dose morphine or by dementia. Neuropsychopharmacology 29(1):152–157

    Article  PubMed  CAS  Google Scholar 

  13. Evanson NK, Van H, Herman JP (2009) GluR5-mediated glutamate signaling regulates hypothalamo–pituitary–adrenocortical stress responses at the paraventricular nucleus and median eminence. Psychoneuroendocrinology 34(9):1370–1379

    Article  PubMed  CAS  Google Scholar 

  14. Fabriek BO, van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM, van den Berg TK, De Groot CJ, Van D, Dijkstra CD (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51(4):297–305

    Article  PubMed  Google Scholar 

  15. Fassbender K, Schmidt R, Mossner R, Kischka U, Kuhnen J, Schwartz A, Hennerici M (1998) Mood disorders and dysfunction of the hypothalamic–pituitary–adrenal axis in multiple sclerosis: association with cerebral inflammation. Arch Neurol 55(1):66–72

    Article  PubMed  CAS  Google Scholar 

  16. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132(Pt 5):1175–1189

    Article  PubMed  Google Scholar 

  17. Gladwin MT, Kanias T, Kim-Shapiro DB (2012) Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. J Clin Invest 122(4):1205–1208

    Article  PubMed  CAS  Google Scholar 

  18. Gold SM, Krüger S, Ziegler KJ, Krieger T, Schulz K-H, Otte C, Heesen C (2011) Endocrine and immune substrates of depressive symptoms and fatigue in multiple sclerosis patients with comorbid major depression. J Neurol Neurosurg Psychiatr 82(7):814–818

    Article  PubMed  Google Scholar 

  19. Gold SM, Raji A, Huitinga I, Wiedemann K, Schulz KH, Heesen C (2005) Hypothalamo–pituitary–adrenal axis activity predicts disease progression in multiple sclerosis. J Neuroimmunol 165(1–2):186–191

    Article  PubMed  CAS  Google Scholar 

  20. Grasser A, Moller A, Backmund H, Yassouridis A, Holsboer F (1996) Heterogeneity of hypothalamic–pituitary–adrenal system response to a combined dexamethasone-CRH test in multiple sclerosis. Exp Clin Endocrinol Diabetes 104(1):31–37

    Article  PubMed  CAS  Google Scholar 

  21. Heesen C, Gold SM, Raji A, Wiedemann K, Schulz KH (2002) Cognitive impairment correlates with hypothalamo–pituitary–adrenal axis dysregulation in multiple sclerosis. Psychoneuroendocrinology 27(4):505–517

    Article  PubMed  CAS  Google Scholar 

  22. Heidbrink C, Hausler SF, Buttmann M et al (2010) Reduced cortisol levels in cerebrospinal fluid and differential distribution of 11beta-hydroxysteroid dehydrogenases in multiple sclerosis: implications for lesion pathogenesis. Brain Behav Immun 24(6):975–984

    Article  PubMed  CAS  Google Scholar 

  23. Hennings JM, Owashi T, Binder EB et al (2009) Clinical characteristics and treatment outcome in a representative sample of depressed inpatients—findings from the Munich Antidepressant Response Signature (MARS) project. J Psychiatr Res 43(3):215–229

    Article  PubMed  Google Scholar 

  24. Herman JP, Cullinan WE, Ziegler DR, Tasker JG (2002) Role of the paraventricular nucleus microenvironment in stress integration. Eur J Neurosci 16(3):381–385

    Article  PubMed  Google Scholar 

  25. Herman JP, Tasker JG, Ziegler DR, Cullinan WE (2002) Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections. Pharmacol Biochem Behav 71(3):457–468

    Article  PubMed  CAS  Google Scholar 

  26. Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M (2006) Adrenomedullin improves the blood–brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 26(2):109–118

    Article  PubMed  CAS  Google Scholar 

  27. Huitinga I, Erkut ZA, van Beurden D, Swaab DF (2004) Impaired hypothalamus–pituitary–adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Ann Neurol 55(1):37–45

    Article  PubMed  Google Scholar 

  28. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49(6):823–832

    Article  PubMed  CAS  Google Scholar 

  29. Koning N, Bo L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62(5):504–514

    Article  PubMed  CAS  Google Scholar 

  30. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409(6817):198–201

    Article  PubMed  CAS  Google Scholar 

  31. MacPhee IA, Antoni FA, Mason DW (1989) Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med 169(2):431–445

    Article  PubMed  CAS  Google Scholar 

  32. Melief J, Koning N, Schuurman KG, Van De Garde MD, Smolders J, Hoek RM, Van EM, Hamann J, Huitinga I (2012) Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia. doi:10.1002/glia.22370

    PubMed  Google Scholar 

  33. Michelson D, Stone L, Galliven E, Magiakou MA, Chrousos GP, Sternberg EM, Gold PW (1994) Multiple sclerosis is associated with alterations in hypothalamic–pituitary–adrenal axis function. J Clin Endocrinol Metab 79(3):848–853

    Article  PubMed  CAS  Google Scholar 

  34. Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. Lancet Neurol 6(10):903–912

    Article  PubMed  Google Scholar 

  35. Miller DH, Thompson AJ, Morrissey SP, MacManus DG, Moore SG, Kendall BE, Moseley IF, McDonald WI (1992) High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. J Neurol Neurosurg Psychiatry 55(6):450–453

    Article  PubMed  CAS  Google Scholar 

  36. Miyashita K, Itoh H, Arai H et al (2006) The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential. Endocrinology 147(4):1642–1653

    Article  PubMed  CAS  Google Scholar 

  37. Moestrup SK, Møller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36(5):347–354

    Article  PubMed  CAS  Google Scholar 

  38. Müller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F, Swaab DF (2001) Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur J Neurosci 14(10):1603–1612

    Article  PubMed  Google Scholar 

  39. Penninx BWJH, Beekman ATF, Bandinelli S, Corsi AM, Bremmer M, Hoogendijk WJ, Guralnik JM, Ferrucci L (2007) Late-life depressive symptoms are associated with both hyperactivity and hypoactivity of the hypothalamo–pituitary–adrenal axis. Am J Geriatr Psychiatry 15(6):522–529

    Article  PubMed  Google Scholar 

  40. Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9(1):62–70

    Article  PubMed  CAS  Google Scholar 

  41. Polman CH, Uitdehaag BM (2000) Drug treatment of multiple sclerosis. West J Med 173(6):398–402

    Article  PubMed  Google Scholar 

  42. Reder AT, Lowy MT, Meltzer HY, Antel JP (1987) Dexamethasone suppression test abnormalities in multiple sclerosis: relation to ACTH therapy. Neurology 37(5):849–853

    Article  PubMed  CAS  Google Scholar 

  43. Reder AT, Makowiec RL, Lowy MT (1994) Adrenal size is increased in multiple sclerosis. Arch Neurol 51(2):151–154

    Article  PubMed  CAS  Google Scholar 

  44. Runmarker B, Andersen O (1993) Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116(Pt 1) (0006–8950 (Linking)):117–134

    Google Scholar 

  45. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS Jr (1995) Characterization of mechanisms involved in transrepression of NF-κB by activated glucocorticoid receptors. Mol Cell Biol 15(2):943–953

    PubMed  CAS  Google Scholar 

  46. Schumann EM, Kumpfel T, Then Bergh F, Trenkwalder C, Holsboer F, Auer DP (2002) Activity of the hypothalamic–pituitary–adrenal axis in multiple sclerosis: correlations with gadolinium-enhancing lesions and ventricular volume. Ann Neurol 51(6):763–767

    Article  PubMed  Google Scholar 

  47. Stefferl A, Storch MK, Linington C, Stadelmann C, Lassmann H, Pohl T, Holsboer F, Tilders FJ, Reul JM (2001) Disease progression in chronic relapsing experimental allergic encephalomyelitis is associated with reduced inflammation-driven production of corticosterone. Endocrinology 142(8):3616–3624

    Article  PubMed  CAS  Google Scholar 

  48. Stetler C, Miller GE (2011) Depression and hypothalamic–pituitary–adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73(2):114–126

    Article  PubMed  Google Scholar 

  49. Talero E, Di Paola R, Mazzon E, Esposito E, Motilva V, Cuzzocrea S (2012) Anti-inflammatory effects of adrenomedullin on acute lung injury induced by Carrageenan in mice. Mediators Inflamm 2012:717851

    PubMed  Google Scholar 

  50. Teunissen CE, Lacobaeus E, Khademi M et al (2009) Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72(15):1322–1329

    Article  PubMed  CAS  Google Scholar 

  51. Then Bergh F, Grasser A, Trenkwalder C, Backmund H, Holsboer F, Rupprecht R (1999) Binding characteristics of the glucocorticoid receptor in peripheral blood lymphocytes in multiple sclerosis. J Neurol 246(4):292–298

    Article  PubMed  CAS  Google Scholar 

  52. Then Bergh F, Kumpfel T, Trenkwalder C, Rupprecht R, Holsboer F (1999) Dysregulation of the hypothalamo–pituitary–adrenal axis is related to the clinical course of MS. Neurology 53(4):772–777

    Article  PubMed  CAS  Google Scholar 

  53. Thompson PM, Bernardo CG, Cruz DA, Ketchum NS, Michalek JE (2013) Concordance of psychiatric symptom ratings between a subject and informant, relevancy to post-mortem research. Transl Psychiatry 3:e214

    Article  PubMed  CAS  Google Scholar 

  54. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 9(5):1705–1711

    PubMed  CAS  Google Scholar 

  55. Vanderlocht J, Hellings N, Hendriks JJA, Vandenabeele F, Moreels M, Buntinx M, Hoekstra D, Antel JP, Stinissen P (2006) Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-alpha-induced oligodendrocyte apoptosis. J Neurosci Res 83(5):763–774

    Article  PubMed  CAS  Google Scholar 

  56. Varga G, Ehrchen J, Tsianakas A, Tenbrock K, Rattenholl A, Seeliger S, Mack M, Roth J, Sunderkoetter C (2008) Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J Leukoc Biol 84(3):644–650

    Article  PubMed  CAS  Google Scholar 

  57. Van Veen T, Nielsen J, Berkhof J et al (2007) CCL5 and CCR5 genotypes modify clinical, radiological and pathological features of multiple sclerosis. J Neuroimmunol 190(1–2):157–164

    Article  PubMed  Google Scholar 

  58. Van Winsen LM, Manenschijn L, van Rossum EF, Crusius JB, Koper JW, Polman CH, Uitdehaag BM (2009) A glucocorticoid receptor gene haplotype (TthIII1/ER22/23EK/9beta) is associated with a more aggressive disease course in multiple sclerosis. J Clin Endocrinol Metab 94(6):2110–2114

    Article  PubMed  Google Scholar 

  59. Ziegler DR, Cullinan WE, Herman JP (2005) Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-d-aspartate receptors. J Comp Neurol 484(1):43–56

    Article  PubMed  CAS  Google Scholar 

  60. Zwadlo-Klarwasser G, Bent S, Haubeck HD, Sorg C, Schmutzler W (1990) Glucocorticoid-induced appearance of the macrophage subtype RM 3/1 in peripheral blood of man. Int Arch Allergy Appl Immunol 91(2):175–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by Dutch MS Research foundation Grant MS 03-525 and MS 03-525ext. We thank the NBB team for their excellent services (http://www.brainbank.nl).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeroen Melief or Inge Huitinga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2013_1140_MOESM1_ESM.tif

Supplementary Fig. 1 Immunostaining for CRH in the periventricular nucleus (PVN) of the hypothalamus in a subject with only low (left panel) and high (right panel) numbers of positive neurons. Sections are taken from identical levels in the PVN (TIFF 8775 kb)

401_2013_1140_MOESM2_ESM.tif

Supplementary Fig. 2 Non-regulated genes in NAWM of MS patients. Gene expression was determined by qPCR analysis (TIFF 1215 kb)

401_2013_1140_MOESM3_ESM.xlsx

Supplementary Table 1 Characteristics of patients included for study of gene expression in normal-appearing white matter. RIN = RNA integrity number; IQR = interquartile range (XLSX 45 kb)

Supplementary Table 2 Sequences of primers used for qPCR (XLSX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melief, J., de Wit, S.J., van Eden, C.G. et al. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter. Acta Neuropathol 126, 237–249 (2013). https://doi.org/10.1007/s00401-013-1140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1140-7

Keywords

Navigation