Skip to main content

Advertisement

Log in

Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The progressive accumulation of extracellular amyloid plaques in the brain is a common hallmark of Alzheimer’s disease (AD). We recently identified a novel species of Aβ phosphorylated at serine residue 8 with increased propensity to form toxic aggregates as compared to non-phosphorylated species. The age-dependent analysis of Aβ depositions using novel monoclonal phosphorylation-state specific antibodies revealed that phosphorylated Aβ variants accumulate first inside of neurons in a mouse model of AD already at 2 month of age. At higher ages, phosphorylated Aβ is also abundantly detected in extracellular plaques. Besides a large overlap in the spatiotemporal deposition of phosphorylated and non-phosphorylated Aβ species, fractionized extraction of Aβ from brains revealed an increased accumulation of phosphorylated Aβ in oligomeric assemblies as compared to non-phosphorylated Aβ in vivo. Thus, phosphorylated Aβ could represent an important species in the formation and stabilization of neurotoxic aggregates, and might be targeted for AD therapy and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β-peptide

NFT:

Neurofibrillary tangles

APP:

Amyloid precursor protein

CTFs:

C-terminal fragments

npAβ:

Non-phosphorylated Aβ

pAβ:

Phosphorylated Aβ

ELISA:

Enzyme-linked immunosorbent assay

WB:

Western blotting

IHC:

Immunohistochemistry

BSA:

Bovine serum albumin

PBS:

Phosphate buffered saline

SDS:

Sodium dodecyl sulphate

PAGE:

Polyacrylamide gel electrophoresis

Fl-APP:

Full-length APP

References

  1. Abramowski D, Rabe S, Upadhaya AR, Reichwald J, Danner S et al (2012) Transgenic expression of intraneuronal Abeta42 but not Abeta40 leads to cellular Abeta lesions, degeneration, and functional impairment without typical Alzheimer’s disease pathology. J Neurosci 32:1273–1283

    Article  PubMed  CAS  Google Scholar 

  2. Bayer TA, Wirths O (2010) Intracellular accumulation of amyloid-Beta—a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci 2:8

    PubMed  CAS  Google Scholar 

  3. Bayer TA, Wirths O (2011) Intraneuronal Abeta as a trigger for neuron loss: can this be translated into human pathology? Biochem Soc Trans 39:857–861

    Article  PubMed  CAS  Google Scholar 

  4. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  PubMed  CAS  Google Scholar 

  5. Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O et al (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300

    Article  PubMed  CAS  Google Scholar 

  6. Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal A beta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 116:647–655

    Article  PubMed  CAS  Google Scholar 

  7. Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA et al (2005) Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience 132:123–135

    Article  PubMed  CAS  Google Scholar 

  8. D’Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134

    Article  PubMed  Google Scholar 

  9. Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA et al (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: raman microscopic evidence. Biochemistry 42:2768–2773

    Article  PubMed  CAS  Google Scholar 

  10. Echeverria V, Ducatenzeiler A, Dowd E, Janne J, Grant SM et al (2004) Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the beta-amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience 129:583–592

    Article  PubMed  CAS  Google Scholar 

  11. Glenner GG, Wong CW (2012) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem Biophys Res Commun 425:534–539

    Article  PubMed  CAS  Google Scholar 

  12. Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:235–1244

    Article  PubMed  CAS  Google Scholar 

  13. Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M et al (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20

    Article  PubMed  CAS  Google Scholar 

  14. Gouras GK, Willen K, Tampellini D (2012) Critical role of intraneuronal Abeta in Alzheimer’s disease: technical challenges in studying intracellular Abeta. Life Sci 91:1153–1158

    Article  PubMed  CAS  Google Scholar 

  15. Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125:489–492

    PubMed  CAS  Google Scholar 

  16. Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G et al (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233

    Article  PubMed  CAS  Google Scholar 

  17. Iwatsubo T, Saido TC, Mann DM, Lee VM, Trojanowski JQ (1996) Full-length amyloid-beta (1–42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 149:1823–1830

    PubMed  CAS  Google Scholar 

  18. Jawhar S, Wirths O, Bayer TA (2011) Pyroglutamate amyloid-beta (Abeta): a hatchet man in Alzheimer disease. J Biol Chem 286:38825–38832

    Article  PubMed  CAS  Google Scholar 

  19. Kumar S, Rezaei-Ghaleh N, Terwel D, Thal DR, Richard M et al (2011) Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J 30:2255–2265

    Article  PubMed  CAS  Google Scholar 

  20. Kumar S, Singh S, Hinze D, Josten M, Sahl HG et al (2012) Phosphorylation of amyloid-beta peptide at serine 8 attenuates its clearance via insulin-degrading and angiotensin-converting enzymes. J Biol Chem 287:8641–8651

    Article  PubMed  CAS  Google Scholar 

  21. Kumar S, Walter J (2011) Phosphorylation of amyloid beta (Abeta) peptides—a trigger for formation of toxic aggregates in Alzheimer’s disease. Aging (Albany NY) 3:803–812

    Google Scholar 

  22. Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S et al (2011) Nitration of tyrosine 10 critically enhances amyloid beta aggregation and plaque formation. Neuron 71:833–844

    Article  PubMed  CAS  Google Scholar 

  23. Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D et al (2001) Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 276:12991–12998

    Article  PubMed  CAS  Google Scholar 

  24. Lansbury PT Jr (1997) Structural neurology: are seeds at the root of neuronal degeneration? Neuron 19:1151–1154

    Article  PubMed  CAS  Google Scholar 

  25. Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. Prog Neurobiol 83:131–139

    Article  PubMed  CAS  Google Scholar 

  26. Lott IT (2012) Neurological phenotypes for down syndrome across the life span. Prog Brain Res 197:101–121

    Article  PubMed  CAS  Google Scholar 

  27. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16:5795–5811

    PubMed  CAS  Google Scholar 

  28. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  29. Milton NG (2001) Phosphorylation of amyloid-beta at the serine 26 residue by human cdc2 kinase. NeuroReport 12:3839–3844

    Article  PubMed  CAS  Google Scholar 

  30. Milton NG (2005) Phosphorylated amyloid-beta: the toxic intermediate in alzheimer’s disease neurodegeneration. Subcell Biochem 38:381–402

    Article  PubMed  CAS  Google Scholar 

  31. Mori C, Spooner ET, Wisniewsk KE, Wisniewski TM, Yamaguch H et al (2002) Intraneuronal Abeta42 accumulation in down syndrome brain. Amyloid 9:88–102

    PubMed  CAS  Google Scholar 

  32. Mori H, Ishii K, Tomiyama T, Furiya Y, Sahara N et al (1994) Racemization: its biological significance on neuropathogenesis of Alzheimer’s disease. Tohoku J Exp Med 174:251–262

    Article  PubMed  CAS  Google Scholar 

  33. Murakami K, Uno M, Masuda Y, Shimizu T, Shirasawa T, Irie K (2008) Isomerization and/or racemization at Asp23 of Abeta42 do not increase its aggregative ability, neurotoxicity, and radical productivity in vitro. Biochem Biophys Res Commun 366:745–751

    Article  PubMed  CAS  Google Scholar 

  34. Oakley H, Cole SL, Logan S, Maus E, Shao P et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  PubMed  CAS  Google Scholar 

  35. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  PubMed  CAS  Google Scholar 

  36. Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron 14:457–466

    Article  PubMed  CAS  Google Scholar 

  37. Saido TC, Yamao-Harigaya W, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176

    Article  PubMed  CAS  Google Scholar 

  38. Schilling S, Zeitschel U, Hoffmann T, Heiser U, Francke M et al (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14:1106–1111

    Article  PubMed  CAS  Google Scholar 

  39. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  40. Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T (2000) Isoaspartate formation and neurodegeneration in Alzheimer’s disease. Arch Biochem Biophys 381:225–234

    Article  PubMed  CAS  Google Scholar 

  41. Tam JH, Pasternak SH (2012) Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci 39:286–298

    PubMed  Google Scholar 

  42. Tekirian TL, Saido TC, Markesbery WR, Russell MJ, Wekstein DR et al (1998) N-terminal heterogeneity of parenchymal and cerebrovascular Abeta deposits. J Neuropathol Exp Neurol 57:76–94

    Article  PubMed  CAS  Google Scholar 

  43. Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5:121–142

    Article  PubMed  CAS  Google Scholar 

  44. Tomiyama T, Asano S, Furiya Y, Shirasawa T, Endo N, Mori H (1994) Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid beta protein analogues. J Biol Chem 269:10205–10208

    PubMed  CAS  Google Scholar 

  45. Walker LC, Rosen RF, LeVine H III (2008) Diversity of Abeta deposits in the aged brain: a window on molecular heterogeneity? Rom J Morphol Embryol 49:5–11

    PubMed  CAS  Google Scholar 

  46. Walter J, Kaether C, Steiner H, Haass C (2001) The cell biology of Alzheimer’s disease: uncovering the secrets of secretases. Curr Opin Neurobiol 11:585–590

    Article  PubMed  CAS  Google Scholar 

  47. Wertkin AM, Turner RS, Pleasure SJ, Golde TE, Younkin SG et al (1993) Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular beta-amyloid or A4 peptides. Proc Natl Acad Sci USA 90:9513–9517

    Article  PubMed  CAS  Google Scholar 

  48. Winton MJ, Lee EB, Sun E, Wong MM, Leight S et al (2011) Intraneuronal APP, not free Abeta peptides in 3xTg-AD mice: implications for tau versus Abeta-mediated Alzheimer neurodegeneration. J Neurosci 31:7691–7699

    Article  PubMed  CAS  Google Scholar 

  49. Wirths O, Bayer TA (2012) Intraneuronal Abeta accumulation and neurodegeneration: lessons from transgenic models. Life Sci 91:1148–1152

    Article  PubMed  CAS  Google Scholar 

  50. Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S et al (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120

    Article  PubMed  CAS  Google Scholar 

  51. Youmans KL, Tai LM, Kanekiyo T, Stine WB Jr, Michon SC et al (2012) Intraneuronal Abeta detection in 5xFAD mice by a new Abeta-specific antibody. Mol Neurodegener 7:8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Multhaup for providing rabbit polyclonal 692 antibodies specific against human Aß. We also thank Drs. M.T. Heneka and M.P. Kummer for providing nitrated Aß. This study was supported by the Deutsche Forschungsgemeinschaft (DFG) to J.W. (WA1477/6, SFB645, and KFo177) and to S.K. by the Alzheimer Forschung Initiative e.V. (AFI # 12854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Walter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Wirths, O., Theil, S. et al. Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer’s disease. Acta Neuropathol 125, 699–709 (2013). https://doi.org/10.1007/s00401-013-1107-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1107-8

Keywords

Navigation