Skip to main content
Log in

Enzymatic assay for quantitative analysis of (d)-2-hydroxyglutarate

  • Methods Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Levels of (d)-2-hydroxyglutarate [D2HG, (R)-2-hydroxyglutarate] are increased in some metabolic diseases and in neoplasms with mutations in the isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) genes. Determination of D2HG is of relevance to diagnosis and monitoring of disease. Standard detection methods of D2HG levels are liquid-chromatography–mass spectrometry or gas-chromatography–mass spectrometry. Here we present a rapid, inexpensive and sensitive enzymatic assay for the detection of D2HG levels. The assay is based on the conversion of D2HG to α-ketoglutarate (αKG) in the presence of the enzyme (d)-2-hydroxyglutarate dehydrogenase (HGDH) and nicotinamide adenine dinucleotide (NAD+). Determination of D2HG concentration is based on the detection of stoichiometrically generated NADH. The quantification limit of the enzymatic assay for D2HG in tumor tissue is 0.44 μM and in serum 2.77 μM. These limits enable detection of basal D2HG levels in human tumor tissues and serum without IDH mutations. Levels of D2HG in frozen and paraffin-embedded tumor tissues containing IDH mutations or in serum from acute myeloid leukemia patients with IDH mutations are significantly higher and can be easily identified with this assay. In conclusion, the assay presented is useful for differentiating basal from elevated D2HG levels in tumor tissue, serum, urine, cultured cells and culture supernatants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, Pollock R, O’Donnell P, Grigoriadis A, Diss T, Eskandarpour M, Presneau N, Hogendoorn PC, Futreal A, Tirabosco R, Flanagan AM (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343

    Article  PubMed  CAS  Google Scholar 

  2. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602

    Article  PubMed  CAS  Google Scholar 

  3. Borger D, Tanabe K, Fan K, Lopez H, Fantin V, Straley K, Schenkein D, Hezel A, Ancukiewicz M, Liebman H, Kwak E, Clark J, Ryan D, Deshpande V, Dias-Santagata D, Ellisen L, Zhu A, Iafrate A (2012) Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17:72–79

    Article  PubMed  CAS  Google Scholar 

  4. Buckel W (1980) The reversible dehydration of (R)-2-hydroxyglutarate to (E)-glutaconate. Eur J Biochem 106:439–447

    Article  PubMed  CAS  Google Scholar 

  5. Bueno C, Villegas ML, Bertolotti SG, Previtali CM, Neumann MG, Encinas MV (2002) The excited-state interaction of resazurin and resorufin with amines in aqueous solutions. Photophysics and photochemical reactions. Photochem Photobiol 76:385–390

    Article  PubMed  CAS  Google Scholar 

  6. Cairns RA, Iqbal J, Lemonnier F, Kucuk C, Ld Leval, Jais J-P, Parrens M, Martin A, Xerri L, Brousset P, Chan LC, Chan W-C, Gaulard P, Mak TW (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119:1901–1903

    Article  PubMed  CAS  Google Scholar 

  7. Candeias LP, MacFarlane DPS, McWhinnie SLW, Maidwell NL, Roeschlaub CA, Sammes PG, Whittlesey R (1998) The catalysed NADH reduction of resazurin to resorufin. J Chem Soc Perkin Trans 2:2333–2334

    Google Scholar 

  8. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    Article  PubMed  CAS  Google Scholar 

  9. Chalmers RA, Lawson AM, Borud O (1977) Gas chromatographic and mass spectrometric studies on urinary organic acids in a patient with congenital lactic acidosis due to pyruvate decarboxylase deficiency. Clin Chim Acta 77:117–124

    Article  PubMed  CAS  Google Scholar 

  10. Chalmers RA, Lawson AM, Watts RW, Tavill AS, Kamerling JP, Hey E, Ogilvie D (1980) d-2-Hydroxyglutaric aciduria: case report and biochemical studies. J Inherit Metab Dis 3:11–15

    Article  PubMed  CAS  Google Scholar 

  11. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  PubMed  CAS  Google Scholar 

  12. Goodman SI, McCabe ERB, Fennessey PV, Mace JW (1980) Multiple acyl-CoA dehydrogenase deficiency (glutaric aciduria type II) with transient hypersarcosinemia and sarcosinuria; possible inherited deficiency of an electron transfer flavoprotein. Pediatr Res 14:12–17

    PubMed  CAS  Google Scholar 

  13. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken J, Wesseling P, Reifenberger G, von Deimling A (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  14. Hoffmann GF, Jakobs C, Holmes B, Mitchell L, Becker G, Hartung HP, Nyhan WL (1995) Organic acids in cerebrospinal fluid and plasma of patients with l-2-hydroxyglutaric aciduria. J Inherit Metab Dis 18:189–193

    Article  PubMed  CAS  Google Scholar 

  15. Kranendijk M, Struys EA, Schaftingen Ev, Gibson KM, Kanhai WA, Knaap MSvd, Amiel J, Buist NR, Das AM, Klerk JBd, Feigenbaum AS, Grange DK, Hofstede FC, Holme E, Kirk EP, Korman SH, Morava E, Morris A, Smeitink J, Sukhai RN, Vallance H, Jakobs C, Salomons GS (2010) IDH2 Mutations in patients with d-2-hydroxyglutaric aciduria. Science 330:336–336

    Article  PubMed  CAS  Google Scholar 

  16. Kuhara T, Shinka T, Inoue Y, Matsumoto M, Yoshino M, Sakaguchi Y, Matsumoto I (1983) Studies of urinary organic acid profiles of a patient with dihydrolipoyl dehydrogenase deficiency. Clin Chim Acta Int J Clin Chem 133:133–140

    Article  CAS  Google Scholar 

  17. Leonardi R, Subramanian C, Jackowski S, Rock CO (2012) Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 287:14615–14620

    Article  PubMed  CAS  Google Scholar 

  18. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712–724

    Article  Google Scholar 

  19. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK, Pohl CS, Wallis JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME, Ivy JV, Kalicki J, Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson MA, Baty J, Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ, Graubert TA, Dipersio JF, Wilson RK, Ley TJ (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. New Engl J Med 361:1058–1066

    Article  PubMed  CAS  Google Scholar 

  20. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  21. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, Spath D, Kayser S, Zucknick M, Gotze K, Horst HA, Germing U, Dohner H, Dohner K (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28:3636–3643

    Article  PubMed  CAS  Google Scholar 

  22. Pollyea D, Kohrt H, Zhang B, Zehnder J, Schenkein D, Fantin V, Straley K, Vasanthakumar A, Abdel-Wahab O, Levine R, Godley L, Medeiros B (2013) 2-Hydroxyglutarate in IDH mutant acute myeloid leukemia: predicting patient responses, minimal residual disease and correlations with methylcytosine and hydroxymethylcytosine levels. Leuk Lymphoma (Epub ahead of print)

  23. Sahm F, Capper D, Pusch S, Balss J, Koch A, Langhans C, Okun J, von Deimling A (2012) Detection of 2-hydroxyglutarate in formalin-fixed paraffin-embedded glioma specimens by gas-chromatography/mass-spectrometry. Brain Pathol 22:26–31

    Article  PubMed  CAS  Google Scholar 

  24. Sellner L, Capper D, Meyer J, Langhans C, Hartog C, Pfeifer H, Ho A, Okun J, Krämer A, von Deimling A (2010) Increased levels of 2-hydroxyglutarate in AML patients with IDH1-R132H and IDH2-R140Q mutations. Eur J Haematol 85:457–459

    Article  PubMed  Google Scholar 

  25. Soundar S, Danek BL, Colman RF (2000) Identification by mutagenesis of arginines in the substrate binding site of the porcine NADP-dependent isocitrate dehydrogenase. J Biol Chem 275:5606–5612

    Article  PubMed  CAS  Google Scholar 

  26. Sponholz W-R, Wünsch B, Dittrich HH (1981) Enzymatische Bestimmung von (R)-2-Hydroxyglutarsäure in Mosten, Weinen und anderen Gärungsgetränken. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 172:264–268

    Article  CAS  Google Scholar 

  27. Struys EA, Salomons GS, Achouri Y, Van Schaftingen E, Grosso S, Craigen WJ, Verhoeven NM, Jakobs C (2005) Mutations in the d-2-hydroxyglutarate dehydrogenase gene cause d-2-hydroxyglutaric aciduria. Am J Hum Genetics 76:358–360

    Article  CAS  Google Scholar 

  28. Van Biervliet JPGM, Bruinvis L, van der Heiden C, Ketting D, Wadman SK, Willemse JL, LaH Monnens (1977) Report of a patient with severe, chronic lactic acidaemia and pyruvate carboxylase deficiency. Dev Med Child Neurol 19:392–401

    Article  PubMed  Google Scholar 

  29. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. New Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  30. Yu X, Bresser J, Schall I, Djurdjevic I, Buckel W, Wang X, Engel P (2012) Development of a satisfactory and general continuous assay for aminotransferases by coupling with (R)-2-hydroxyglutarate dehydrogenase. Anal Biochem 431:127–131

    Article  PubMed  CAS  Google Scholar 

  31. Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas von Deimling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1: Optimization of the D2HG assay. (1a) Assay performed with four different buffers. Best performance is realized using HEPES buffer. Hence, following experiments were performed only with HEPES buffer. (1b)To determine the optimal pH conditions several pH values in the range from 7.1 to 8.0 were tested. As expected from previous data [4] pH 8.0 gives the best output but assay could also be performed at pH 7.4 and 7.7 if necessary with only a slight loss in performance. (1c + d) Best concentrations of HGDH and diaphorase were determined with 0.1 μg HGDH and 0.1 U diaphorase per well considering sensitivity and economic reasons.

Supplementary figure 2: Resazurin concentration in the D2HG assay was optimized for different amounts of D2HG (0.5 μM, 5 μM and 50 μM). (2a + b) For low concentrations of D2HG (0.5 μM and 5 μM) best signal-to-noise ratio was seen for concentrations of 1 μM resazurin. (2c + d) Higher D2HG concentrations required higher resazurin levels. For 50 μM D2HG best signal-to-noise ratio was seen with 5 μM resazurin.

Supplementary figure 3: (3a) Comparison of D2HG standard solved in water, human serum and urine detected with diaphorase/resazurin. (3b) D2HG solved in water detected with PMS/XTT. Absorption was measured at 450 nm. (3c) Testing stereoselectivity of HGDH with 5 μM and 50 μM D2HG and L2HG.

Supplementary material 1 (PPTX 121 kb)

Supplementary material 2 (PPTX 125 kb)

Supplementary material 3 (PPTX 99 kb)

Supplementary material 4 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balss, J., Pusch, S., Beck, AC. et al. Enzymatic assay for quantitative analysis of (d)-2-hydroxyglutarate. Acta Neuropathol 124, 883–891 (2012). https://doi.org/10.1007/s00401-012-1060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1060-y

Keywords

Navigation