Skip to main content

Advertisement

Log in

Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

TDP-43 has been implicated in the pathogenesis of amyotrophic lateral sclerosis and other neurodegenerative diseases. Here we demonstrate, using neuronal and spinal cord organotypic culture models, that chronic excitotoxicity, oxidative stress, proteasome dysfunction and endoplasmic reticulum stress mechanistically induce mislocalization, phosphorylation and aggregation of TDP-43. This is compatible with a lack of function of this protein in the nucleus, specially in motor neurons. The relationship between cell stress and pathological changes of TDP-43 also includes a dysfunction in the survival pathway mediated by mitogen-activated protein kinase/extracellular signal-regulated kinases (ERK1/2). Thus, under stress conditions, neurons and other spinal cord cells showed cytosolic aggregates containing ERK1/2. Moreover, aggregates of abnormal phosphorylated ERK1/2 were also found in the spinal cord in amyotrophic lateral sclerosis (ALS), specifically in motor neurons with abnormal immunoreactive aggregates of phosphorylated TDP-43. These results demonstrate that cellular stressors are key factors in neurodegeneration associated with TDP-43 and disclose the identity of ERK1/2 as novel players in the pathogenesis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amador-Ortiz C, Lin WL, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    Article  PubMed  CAS  Google Scholar 

  2. Arai K, Lee SR, van Leyen K et al (2004) Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells. J Neurochem 89:232–239

    Article  PubMed  CAS  Google Scholar 

  3. Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  PubMed  CAS  Google Scholar 

  4. Atkin JD, Farg MA, Walker AK et al (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407

    Article  PubMed  CAS  Google Scholar 

  5. Ayala YM, Misteli T, Baralle FE (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci USA 105:3785–3789

    Article  PubMed  CAS  Google Scholar 

  6. Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397–408

    PubMed  CAS  Google Scholar 

  7. Brady OA, Meng P, Zheng Y et al (2011) Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J Neurochem 116:248–259

    Article  PubMed  CAS  Google Scholar 

  8. Buratti E, Brindisi A, Giombi M et al (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280:37572–37584

    Article  PubMed  CAS  Google Scholar 

  9. Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343

    Article  PubMed  CAS  Google Scholar 

  10. Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272:9086–9092

    Article  PubMed  CAS  Google Scholar 

  11. Czubryt MP, Austria JA, Pierce GN (2000) Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, ERK2. J Cell Biol 148:7–16

    Article  PubMed  CAS  Google Scholar 

  12. Dewey CM, Cenik B, Sephton CF et al (2011) TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 31:1098–1108

    Article  PubMed  CAS  Google Scholar 

  13. Dormann D, Capell A, Carlson AM et al (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110:1082–1094

    Article  PubMed  CAS  Google Scholar 

  14. Ferrante RJ, Browne SE, Shinobu LA et al (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    Article  PubMed  CAS  Google Scholar 

  15. Foulds P, McAuley E, Gibbons L et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116:141–146

    Article  PubMed  CAS  Google Scholar 

  16. Freibaum BD, Chitta RK, High AA et al (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120

    Article  PubMed  CAS  Google Scholar 

  17. Gendron TF, Josephs KA, Petrucelli L (2010) Review: transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol Appl Neurobiol 36:97–112

    PubMed  CAS  Google Scholar 

  18. Giordana MT, Piccinini M, Grifoni S et al (2010) TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol 20:351–360

    Article  PubMed  CAS  Google Scholar 

  19. Granado-Serrano AB, Martin MA, Haegeman G et al (2010) Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. Br J Nutr 103:168–179

    Article  PubMed  CAS  Google Scholar 

  20. Henkel JS, Engelhardt JI, Siklos L et al (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235

    Article  PubMed  CAS  Google Scholar 

  21. Higashi S, Iseki E, Yamamoto R et al (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294

    Article  PubMed  CAS  Google Scholar 

  22. Hirano A, Nakano I, Kurland LT et al (1984) Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:471–480

    Article  PubMed  CAS  Google Scholar 

  23. Ilieva EV, Ayala V, Jove M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123

    Article  PubMed  Google Scholar 

  24. Jung T, Engels M, Kaiser B et al (2006) Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radic Biol Med 40:1303–1312

    Article  PubMed  CAS  Google Scholar 

  25. Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    Article  PubMed  CAS  Google Scholar 

  26. Kametani F, Nonaka T, Suzuki T et al (2009) Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun 382:405–409

    Article  PubMed  CAS  Google Scholar 

  27. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    PubMed  CAS  Google Scholar 

  28. Kinoshita Y, Ito H, Hirano A et al (2009) Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 68:1184–1192

    Article  PubMed  CAS  Google Scholar 

  29. Kuo PH, Doudeva LG, Wang YT et al (2009) Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37:1799–1808

    Article  PubMed  CAS  Google Scholar 

  30. Liu-Yesucevitz L, Bilgutay A, Zhang YJ et al (2010) Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5:e13250

    Article  PubMed  Google Scholar 

  31. Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131

    Article  PubMed  CAS  Google Scholar 

  32. McDonald KK, Aulas A, Destroismaisons L et al (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410

    Article  PubMed  CAS  Google Scholar 

  33. Menzies FM, Ince PG, Shaw PJ (2002) Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Int 40:543–551

    Article  PubMed  CAS  Google Scholar 

  34. Nakashima-Yasuda H, Uryu K, Robinson J et al (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229

    Article  PubMed  CAS  Google Scholar 

  35. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  36. Nishimura AL, Zupunski V, Troakes C et al (2010) Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133:1763–1771

    Article  PubMed  Google Scholar 

  37. Nonaka T, Arai T, Buratti E et al (2009) Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells. FEBS Lett 583:394–400

    Article  PubMed  CAS  Google Scholar 

  38. Ou SH, Wu F, Harrich D et al (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69:3584–3596

    PubMed  CAS  Google Scholar 

  39. Rothstein JD, Jin L, Dykes-Hoberg M et al (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90:6591–6595

    Article  PubMed  CAS  Google Scholar 

  40. Rothstein JD, Tsai G, Kuncl RW et al (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28:18–25

    Article  PubMed  CAS  Google Scholar 

  41. Sasaki S, Takeda T, Shibata N et al (2010) Alterations in subcellular localization of TDP-43 immunoreactivity in the anterior horns in sporadic amyotrophic lateral sclerosis. Neurosci Lett 478:72–76

    Article  PubMed  CAS  Google Scholar 

  42. Schwab C, Arai T, Hasegawa M et al (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67:1159–1165

    Article  PubMed  Google Scholar 

  43. Sephton CF, Cenik C, Kucukural A et al (2011) Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286:1204–1215

    Article  PubMed  CAS  Google Scholar 

  44. Spencer JP, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278:34783–34793

    Article  PubMed  CAS  Google Scholar 

  45. Tatom JB, Wang DB, Dayton RD et al (2009) Mimicking aspects of frontotemporal lobar degeneration and Lou Gehrig’s disease in rats via TDP-43 overexpression. Mol Ther 17:607–613

    Article  PubMed  CAS  Google Scholar 

  46. Wils H, Kleinberger G, Janssens J et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863

    Article  PubMed  CAS  Google Scholar 

  47. Wood JD, Beaujeux TP, Shaw PJ (2003) Protein aggregation in motor neurone disorders. Neuropathol Appl Neurobiol 29:529–545

    Article  PubMed  CAS  Google Scholar 

  48. Yamashita M, Nonaka T, Arai T et al (2009) Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett 583:2419–2424

    Article  PubMed  CAS  Google Scholar 

  49. Zhang YJ, Xu YF, Cook C et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106:7607–7612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to tissue donors and their families. This work was supported by grants from Spanish Ministry of Education and Science [grant numbers BFU 2009-11879/BFI, AGL2006-12433, BFU 2009-06427/E]; the Generalitat of Catalunya [grant number 2009SGR-735]; the Spanish Ministry of Health [grant number PI08-1843 to M.P.O., BESAD-P and PI08-0582 to I.F.]; the ALS Catalan Foundation [to I.F.]; and “La Caixa” Foundation. Supported also by the COST B-35 Action. V.C has been supported by a predoctoral fellowship from Govern Balear, Conselleria d’ Economia Hisenda i Innovació and D.C. by a predoctoral fellowship from the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Portero-Otin.

Additional information

V. Ayala and A. B. Granado-Serrano contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala, V., Granado-Serrano, A.B., Cacabelos, D. et al. Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS. Acta Neuropathol 122, 259–270 (2011). https://doi.org/10.1007/s00401-011-0850-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0850-y

Keywords

Navigation